1 / 68

Introductory Logic PHI 120

Presentation: “ Double Turnstile Problems ". Introductory Logic PHI 120. Homework. Proofs: 1.5.1 (A/H, p.29-30) S21 – S24 (v ->) S25 – S27 (the dilemmas) S44 (Imp/Exp) External Web Pages: “ R. Smith Guide: Proofs without tears ” available through class web page. ->I and RAA.

bebe
Download Presentation

Introductory Logic PHI 120

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Presentation: “Double Turnstile Problems" Introductory LogicPHI 120

  2. Homework • Proofs: 1.5.1 (A/H, p.29-30) • S21 – S24 (v ->) • S25 – S27 (the dilemmas) • S44 (Imp/Exp) • External Web Pages: • “R. Smith Guide: Proofs without tears” • available through class web page

  3. ->I and RAA

  4. Internalize These Strategies ->I • Assume antecedent of the conclusion • Solve for the consequent • Apply ->I rule RAA • Assume the denial of what you’re solving for • Derive a contradiction • Apply RAA rule

  5. Double Turnstile Problems P v Q ⊣⊢ ~P -> Q

  6. P v Q ⊣⊢ ~P -> Q

  7. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q ~P -> Q ⊢ P v Q

  8. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q ~P -> Q ⊢ P v Q

  9. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A (2) ~P -> Q ⊢ P v Q

  10. P v Q ⊣⊢ ~P -> Q P v Q⊢ ~P -> Q • (1) P v Q A (2) ?? ~P -> Q ⊢ P v Q

  11. P v Q ⊣⊢ ~P -> Q P v Q⊢ ~P ->Q • (1) P v Q A (2) ?? ~P -> Q ⊢ P v Q

  12. P v Q ⊣⊢ ~P -> Q P v Q⊢ ~P-> Q • (1) P v Q A (2) ?? ~P -> Q ⊢ P v Q

  13. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A (2) ?? ~P -> Q ⊢ P v Q Strategy of ->I 1. Assume the antecedent of the conclusion 2. Solve for the consequent (as a conclusion) 3. Apply ->I rule.

  14. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A 2 (2) ~PA ~P -> Q ⊢ P v Q Strategy of ->I 1. Assume the antecedent of the conclusion 2. Solve for the consequent (as a conclusion) 3. Apply ->I rule.

  15. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P-> Q • (1) P v Q A 2 (2) ~P A ~P -> Q ⊢ P v Q We now have too many assumptions! Strategy of ->I 1. Assume the antecedent of the conclusion 2. Solve for the consequent (as a conclusion) 3. Apply ->I rule.

  16. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A (3) ?? ~P -> Q ⊢ P v Q Phase II: Solve for consequent Strategy of ->I 1. Assume the antecedent of the conclusion 2. Solve for the consequent (as a conclusion) 3. Apply ->I rule.

  17. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A (3) ?? ~P -> Q ⊢ P v Q Strategy of ->I 1. Assume the antecedent of the conclusion 2. Solve for the consequent (as a conclusion) 3. Apply ->I rule.

  18. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A (3) Q1,2vE ~P -> Q ⊢ P v Q Strategy of ->I 1. Assume the antecedent of the conclusion 2. Solve for the consequent (as a conclusion) 3. Apply ->I rule.

  19. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE ~P -> Q ⊢ P v Q Strategy of ->I 1. Assume the antecedent of the conclusion 2. Solve for the consequent (as a conclusion) 3. Apply ->I rule.

  20. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE (4) ?? ~P -> Q ⊢ P v Q Phase III: Apply ->I rule Strategy of ->I 1. Assume the antecedent of the conclusion 2. Solve for the consequent (as a conclusion) 3. Apply ->I rule.

  21. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE (4) ~P -> Q3 ->I(2) ~P -> Q ⊢ P v Q

  22. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q

  23. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q

  24. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q

  25. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q Is the final line the main conclusion? Are the assumptions correct on this final line?

  26. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q

  27. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q 1 (1) ~P -> Q A

  28. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q • (1) ~P -> Q A (2)

  29. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q • (1) ~P -> Q A (2)

  30. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q • (1) ~P -> Q A (2) ?? Look at the premise in relation to the conclusion?

  31. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q • (1) ~P -> Q A (2) ?? Look at the premise in relation to the conclusion?

  32. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q • (1) ~P -> Q A (2) A Assume what?

  33. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q • (1) ~P -> Q A 2 (2) ~P A The antecedent of (1)

  34. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q • (1) ~P -> Q A • (2) ~P A (3)

  35. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q • (1) ~P -> Q A • (2) ~P A (3) Q 1,2 ->E

  36. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q • (1) ~P -> Q A • (2) ~P A (3) Q 1,2 ->E

  37. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q 1 (1) ~P -> Q A 2 (2) ~P A 1,2 (3) Q 1,2 ->E

  38. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q 1(1) ~P -> Q A 2(2) ~P A 1,2 (3) Q 1,2 ->E (4) ?? Make the wedge (i.e., the conclusion)

  39. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q 1(1) ~P -> Q A 2(2) ~P A 1,2 (3) Q 1,2 ->E 1,2 (4) P v Q 3 vI

  40. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q 1(1) ~P -> Q A 2(2) ~P A 1,2 (3) Q 1,2 ->E 1,2 (4) P v Q 3 vI Is the final line the main conclusion? Are the assumptions correct on this final line?

  41. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q 1(1) ~P -> Q A 2(2) ~P A 1,2 (3) Q 1,2 ->E 1,2 (4) P v Q 3 vI Too many assumptions!!!!

  42. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q 1(1) ~P -> Q A 2(2) ~P A 1,2 (3) Q 1,2 ->E 1,2 (4) P v Q 3 vI To discharge assumptions: ->I or RAA?

  43. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q 1(1) ~P -> Q A 2(2) ~P A 1,2 (3) Q 1,2 ->E 1,2 (4) P v Q 3 vI (5) A Strategy of RAA 1. Assume the denial of the conclusion 2. Derive a contradiction 3. Use RAA to deny/discharge an assumption

  44. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q 1(1) ~P -> Q A 2(2) ~P A 1,2 (3) Q 1,2 ->E 1,2 (4) P v Q 3 vI (5) ~(P v Q)A Strategy of RAA 1. Assume the denial of the conclusion 2. Derive a contradiction 3. Use RAA to deny/discharge an assumption

  45. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q 1(1) ~P -> Q A 2(2) ~P A 1,2 (3) Q 1,2 ->E 1,2 (4) P v Q 3 vI 5 (5) ~(P v Q)A Strategy of RAA 1. Assume the denial of the conclusion 2. Derive a contradiction 3. Use RAA to deny/discharge an assumption

  46. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q 1(1) ~P -> Q A 2(2) ~P A 1,2 (3) Q 1,2 ->E 1,2 (4) P v Q 3 vI 5 (5) ~(P v Q) A Strategy of RAA 1. Assume the denial of the conclusion 2. Derive a contradiction 3. Use RAA to deny/discharge an assumption

  47. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q 1(1) ~P -> Q A 2(2) ~P A 1,2 (3) Q 1,2 ->E 1,2 (4) P v Q 3 vI • (5) ~(P v Q) A (6) Strategy of RAA 1. Assume the denial of the conclusion 2. Derive a contradiction 3. Use RAA to deny/discharge an assumption

  48. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q 1 (1) ~P -> Q A 2 (2) ~P A 1,2 (3) Q 1,2 ->E 1,2 (4) P v Q 3 vI 5 (5) ~(P v Q) A (6) 4,5 RAA(?) Strategy of RAA 1. Assume the denial of the conclusion 2. Derive a contradiction 3. Use RAA to deny/discharge an assumption

  49. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q 1 (1) ~P -> Q A 2 (2) ~P A 1,2 (3) Q 1,2 ->E 1,2 (4) P v Q 3 vI 5 (5) ~(P v Q) A (6) 4,5 RAA(?) Assumptions • Which assumption should you discharge first? • 1, 2, or 5

  50. P v Q ⊣⊢ ~P -> Q P v Q ⊢ ~P -> Q • (1) P v Q A • (2) ~P A 1,2 (3) Q 1,2 vE 1 (4) ~P -> Q 3 ->I(2) ~P -> Q ⊢ P v Q 1(1) ~P -> Q A 2 (2) ~P A 1,2 (3) Q 1,2 ->E 1,2 (4) P v Q 3 vI 5 (5) ~(P v Q) A (6) 4,5 RAA(?) not [1] • Which assumption should you discharge first? • 1, 2, or 5

More Related