690 likes | 849 Views
Presentation: "Truth Tables – Sequents". Introductory Logic PHI 120. This PowerPoint Presentation contains a large number of slides, a good many of which are nearly identical. If you print this Presentation, I recommend six or nine slides per page. Homework. Study Allen/Hand Logic Primer
E N D
Presentation: "Truth Tables – Sequents" Introductory LogicPHI 120 This PowerPoint Presentation contains a large number of slides, a good many of which are nearly identical. If you print this Presentation, I recommend six or nine slides per page.
Homework • Study Allen/Hand Logic Primer • Sec. 1.1, p. 1-2: “validity” • Sec. 2.2, p. 43-4, “validity” & “invalidating assignment • Complete Ex. 2.1, p. 42: i-x Turn to page 40 in The Logic Primer also take out TTs handout
Truth Tables Truth Value of Sentences • Section 2.1 • (quick review)
Atomic sentence Simple
Truth Tables See bottom of Truth Tables Handout Complex Sentences
~Φ • False?
~Φ • False – if the statement being negated (Φ) is True
Φ & Ψ • False?
Φ & Ψ • False – if one or both conjuncts are False
Φ & Ψ • False – if one or both conjuncts are False
Φ v Ψ • False?
Φ v Ψ • False – only if bothdisjuncts are False
Φ v Ψ • False – only if bothdisjuncts are False
Φ -> Ψ • False?
Φ -> Ψ • False – if antecedent is True and consequent is False
Φ -> Ψ • False – if antecedent is True and consequent is False
Φ <-> Ψ • False?
Φ <-> Ψ • False – if the two conditions have a different truth value
Φ <-> Ψ • False – if the two conditions have a different truth value
Φ v ~Φ Note the binary structure (P & ~Q) v ~(P & ~Q) • Identify the main connective. • How many atomic sentences are in this WFF?
(P & ~Q) v ~(P & ~Q)Φ v ~Φ • Determine the number of rows for the WFF or the sequent as a whole
(P & ~Q) v ~(P & ~Q) • Determine the number of rows for the WFF or the sequent as a whole
TT Method in a Nutshell Determine truth-values of: • atomic statements • negations of atomics • inside parentheses • negation of the parentheses • any remaining connectives
(P & ~Q) v ~(P & ~Q)Φ v ~Φ • Step 3 on Handout • Fill in left main column first.
(P & ~Q) v ~(P & ~Q)Φ v ~Φ • Step 3 on Handout • Fill in left main column first.
(P & ~Q) v ~(P & ~Q)Φ v ~Φ • Step 3 on Handout • Fill in left main column first.
(P & ~Q) v ~(P & ~Q)Φ v ~Φ • Step 4 on Handout • Assign truth-values for negation of simple statements
(P & ~Q) v ~(P & ~Q)Φ v ~Φ • Step 4 on Handout • Assign truth-values for negation of simple statements
(P & ~Q) v ~(P & ~Q)Φ v ~Φ • Step 4 on Handout • Assign truth-values for negation of simple statements
(P & ~Q) v ~(P & ~Q)Φ v ~Φ When is a conjunction (an “&” statement) false? • Step 5 on Handout • Assign truth-values for innermost binary connectives
(P & ~Q) v ~(P & ~Q)Φ v ~Φ When is a conjunction (an “&” statement) false?
(P & ~Q) v ~(P & ~Q)Φ v ~Φ When is a conjunction (an “&” statement) false?
(P & ~Q) v ~(P & ~Q)Φ v ~Φ When is a conjunction (an “&” statement) false?
(P & ~Q) v ~(P & ~Q)Φ v ~Φ When is a conjunction (an “&” statement) false?
(P & ~Q) v ~(P & ~Q)Φ v ~Φ • Step 5 on Handout • Assign truth-values for innermost binary connectives
(P & ~Q) v ~(P & ~Q)Φ v ~Φ • Step 6a on Handout • Assign truth-values for negation of compounds
(P & ~Q) v ~(P & ~Q)Φ v ~Φ • Step 6a on Handout • Assign truth-values for negation of compounds
(P & ~Q) v ~(P & ~Q)Φ v ~Φ When is a disjunction (a “v” statement) false? • Step 6b on Handout • Assign truth-values for remaining
(P & ~Q) v ~(P & ~Q)Φ v ~Φ • Step 6b on Handout • Assign truth-values for remaining
(P & ~Q) v ~(P & ~Q)Φ v ~Φ When is a disjunction (a “v” statement) false?
(P & ~Q) v ~(P & ~Q)Φ v ~Φ When is a disjunction (a “v” statement) false?
(P & ~Q) v ~(P & ~Q)Φ v ~Φ When is a disjunction (a “v” statement) false?
(P & ~Q) v ~(P & ~Q)Φ v ~Φ When is a disjunction (a “v” statement) false?
(P & ~Q) v ~(P & ~Q)Φ v ~Φ The values under the governing connective are all T’s.
TTs: Sentences p. 47-8: “tautology,” “inconsistency & contingent” Classifying Sentences
Φ v Ψ Look Under the Main Connective • Tautologies • Only Ts under main operator • Necessarily true
Φ v Ψ Look Under the Main Connective • Tautologies • Only Ts under main operator • Necessarily true
~Φ Look Under the Main Connective • Inconsistencies • Only Fs under main operator • Necessarily false
~Φ Look Under the Main Connective • Inconsistencies • Only Fs under main operator • Necessarily false