1 / 10

3.2 Review PBS

3.2 Review PBS. What is the DNA code? What is the connection between genes and proteins? . DNA is read in segments, called genes A gene is a particular sequence of nucleotide bases that code for a protein.

becky
Download Presentation

3.2 Review PBS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 3.2 Review PBS

  2. What is the DNA code? What is the connection between genes and proteins? • DNA is read in segments, called genes • A gene is a particular sequence of nucleotide bases that code for a protein. • The sequence of bases determines what sequence the amino acids are in, which determines the protein

  3. How are proteins produced in a cell? How does the sequence of nucleotides in DNA determine the sequence of amino acids in a protein? • Step 1: Transcription • DNA is too large and fragile to leave the nucleus. • So it is copied into a mRNA template by RNA polymerase • mRNA acts a “messenger”, which takes the gene code out of the nucleus to the ribosome

  4. How are proteins produced in a cell? How does the sequence of nucleotides in DNA determine the sequence of amino acids in a protein? • Step 2: Translation • mRNA binds to a ribosome • Ribosome reads the mRNA in three bases at a time (called codons) These determine what amino acid is brought • tRNA come and bind to the codons using anticodons • This tRNA brings a specific amino acid • This process repeats until the whole protein is made • Therefore the sequence of DNA determines the codons in mRNA, which determines the sequence of amino acids, which determines the protein being made.

  5. How are proteins produced in a cell? How does the sequence of nucleotides in DNA determine the sequence of amino acids in a protein?

  6. What determines the shape of a protein? • Many amino acids have different properties (positive, negative, or neutral charge). Therefore the amino acids present and their order in the chain affect the shape of the protein due to the following forces. • Van der Waals forces – random attractive forces between atoms • Electrostatic charge – positive amino acids will attract negative amino acids and repel positive amino acids • S-S – Covalent bonds between amino acids with sulfur, these are stronger forces that hold the protein shape steady • Hydrogen bonds – bond formed between two molecules that are polar. (see more no next page)

  7. What determines the shape of a protein? • Polar amino acids are said to be hydrophilic • Hydrophilic amino acids like water because they are polar like water and will attract water. • Nonpolar amino acids are said to be hydrophobic • Hydrophobic amino acids are “afraid” of water because they are not polar and will repel water (fats are hydrophobic, which is why they do not mix with water) • Hydrophilic amino acids will attract each other and form hydrogen bonds. They will repel hydrophobic amino acids.

  8. Is the shape of a protein affected by its surrounding environment? • In water hydrophilic amino acids will spread out (attracted to water) and hydrophobic amino acids will clump up (repelled by water) • In oil hydrophilic amino acids will clump up (repelled by hydrophobic oil) and hydrophobic amino acids will spread out.

  9. What is a mutation?How does a change in the DNA code affect the shape of a protein? • Mutation is change in one base (point mutation) or bases (frameshift mutation due to addition or deletion of base) of DNA. • This can change the codon, which can change amino acids. • If a amino acid of one property is replaced with an amino acid of another property this can change in the interactions of the amino acids and the shape of the protein.

  10. Can changing just one nucleotide in a gene change the shape of a protein? • Yes, examples: Taysachs and Sickle Cell • A single base changes glutamic acid (hydrophilic amino acid) to change to valine (hydrophobic amino acid) • This change causes valine(a hydrophobic amino acid) to to stick to the hydrophobic pocket of another hemoglobin. • The hemoglobin sticking together causes the cell to be sickle shaped.

More Related