1 / 29

LA MISTERIOSA

LA MISTERIOSA. TEORIA M. LA MADRE DE LAS SUPERCUERDAS. JAVIER DE LUCAS.

becky
Download Presentation

LA MISTERIOSA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LA MISTERIOSA TEORIA M LA MADRE DE LAS SUPERCUERDAS JAVIER DE LUCAS

  2. La Teoría de Cuerdas es la historia del espacio y el tiempo desde Einstein; por primera vez en la historia de la Física se dispone de un marco en el que se puede explicar cualquiera de las características fundamentales sobre las que está construido el Universo. Por esta razón, se dice a veces sobre la Teoría de Cuerdas que puede ser la «teoría para todo»(theory of everything: T.O.E.) o la teoría «última» o «final». La Mecánica Cuántica es un marco conceptual que sirve para comprender las propiedades microscópicas del Universo. Además, del mismo modo que la Relatividad Especial y la Relatividad General exigen unos cambios radicales en nuestro modo de ver el mundo cuando los objetos se mueven con gran rapidez o tienen una gran masa, la Mecánica Cuántica revela que el Universo tiene unas propiedades igual de asombrosas, si no más, cuando se examina a escalas de distancias atómicas o subatómicas

  3. La Historia de la Física es un largo recorrido hacia la UNIFICACION Newton unificó las leyes de la Tierra con las del Universo en su Teoría de Gravitación Universal F = G M1 M2 /R2

  4. Maxwell unificó la Electricidad y el Magnetismo con sus ecuaciones del Campo Electromagnético

  5. Einstein revolucionó la Física con su Teoría de la Relatividad, pero no consiguió unificar la Gravedad con el Electromagnetismo

  6. La Mecánica Cuántica revolucionó la Física, estudiando el comportamiento del mundo microscópico.

  7. La Teoría de la Relatividad es incompatible con la Mecánica Cuántica.

  8. El Modelo Estándar establece las partículas elementales que se combinan para formar todo el “zoo de partículas” descubiertas en los aceleradores que desconcertaron a los físicos

  9. La Unificación del Modelo Estándar con la Relatividad General en una única Teoría es el gran reto que los físicos aún no han logrado Esta Teoría podría ser la Teoría de Supercuerdas, y más estrictamente, la TEORIA M, propuesta en1995 por Edward Witten

  10. La Teoría M unifica las cinco Teorías de Supercuerdas y la Teoría de Supergravedad en 11 Dimensiones.

  11. Básicamente, las Teorías de Cuerdas predicen la existencia de unos entes energéticos infinitesimales, las llamadas “cuerdas”, abiertas o cerradas, de 1 a n dimensiones, cuyas vibraciones producen las partículas definidas en el Modelo Estándar. La adición de propiedades supersimétricas a estas Teorías origina el nombre de “supercuerdas”. La longitud de la cuerda es pequeñísima. Tan pequeña, que, en proporción, su relación de tamaño con el núcleo atómico es equivalente a la de un átomo con el Sistema Solar completo

  12.                 La teoría de la Supersimetría fue descubierta, independientemente, por varios grupos de físicos. La estudiaron Y. A. Golfand y E.P. Likhtman, del Instituto de Física Lebedev de Moscú y, posteriormente, D. V. Volkov y V. P. Akulov, del Instituto Fisicotécnico de Jarkov. También describieron una simetría bosón-fermión, Pierre M. Ramond y John Schwarz, del Instituto Técnico de California; y André Neveu, de la Ecole Normale Supérieure. Pero la mayoría de los físicos no prestó gran atención a la Supersimetría hasta 1973, en que Julius Wess y Bruno Zumino inventaron una teoría relativista del campo cuántico simple y renormalizable que era supersimétrica. Los infatigables físicos teóricos han elaborado desde entonces otras teorías del campo supersimétrico. La Teoría de la Supersimetría supone que las partículas de espines diferentes se asocian en un gran grupo llamado "grupo de supersimetría", que implica la existencia de operadores que transforman una partícula de espín dado en una partícula de espín diferente. Bajo su acción, los fermiones (de espín semientero) se transforman en bosones (espín entero). Ya que existen partículas de espín 1/2, 1 y 2, deberían existir también espines 0 y 3/2, para completar el quinteto: 0, 1/2, 1, 3/2, 2. Si la noción de Supersimetría se aplica a la realidad, debe de haber partículas elementales de tipo escalar

  13. Ya en1984, existían varias teorías de supercuerdas en 10 dimensiones. Pero todas estas teorías comportaban una serie de irregularidades anómalas. En ese mismo año 1984, M.B. Green y J. Schwarz descubrieron un método para anular las anomalías de Yang-Mills, las gravitacionales y los infinitos, al que se le llamó mecanismo de Green-Schwarz, liberando con ello a tres teorías que mostraban inconsistencia. Estas fueron la Tipo I (con grupo de norma SO(32)), Tipo IIA, y Tipo IIB. Por otra parte, en 1984, se presentaron dos nuevas teorías a las que se les llamó heteróticas y que satisfacían el mecanismo de Green-Schwarz, con grupo de norma SO(32), y E8 x E8. Ellas fueron propugnadas por .J. Gross, J.A. Harvey, E. Martinec y R. Rhom. Luego se logró identificar a la heterótica E8 x E8, gracias a los aportes de P. Candelas, G.T. Horowitz y A. Strominger, como la candidata más prometedora para constituirse en una teoría que unificara a las interacciones fundamentales incorporando en forma natural a la gravedad de la relatividad general. En este procesos, se logró diseñar, dentro de los límites de baja energía, una teoría que se asemeja bastante a las GUT's, pero con la ventaja de que, muchas de las propiedades, tales como el número de generaciones de leptones y quarks, el origen del sabor, etc. son deducidos por la teoría en diez dimensiones a través de un mecanismo de compactificación de seis de las diez dimensiones. Resumiendo, podemos señalar que es posible contabilizar la existencia de cinco teorías de supercuerdas que serían consistentes conteniendo gravedad: I, IIA, IIB, Het (SO(32)), y Het (E8 x E8) y que a partir de éstas se llegaría a la obtención de una gran teoría unificada (GUT) En las Teorías de Cuerdas, lo que anteriormente se consideraba partículas, se describe ahora como ondas viajando por las cuerdas, como las notas musicales que emiten las cuerdas vibrantes de un violín. La emisión o absorción de una partícula por otra corresponde a la división o reunión de cuerdas

  14. LAS CINCO TEORIAS DE SUPERCUERDAS Tipo I SO(32): Se trata de uno de los modelos teóricos de las supercuerdas estructurado con cuerdas abiertas. Tiene una supersimetría uno ( N = 1) con diez dimensiones. Las cuerdas abiertas transportan grados gauges libres en su puntas comas o finales. Esta teoría está compelida a correlacionarse, exclusivamente, con el tipo SO(32) de la teoría gauge para anular las perturbaciones o anomalías. Contiene D-comas o D-branes con 1, 5 y 9 dimensiones espaciales. Tipo IIA: Esta es una teoría de supercuerdas desarrollada con cuerdas cerradas y que tiene dos (N = 2) supersimetrías en diez dimensiones. Inserta dos gravitinos (teóricas partículas supercompañeras del gravitón) que se mueven en sentido opuesto en las cuerdas cerradas de la hoja del mundo, con oposiciones a las chirales (no es una teoría chiral) bajo diez dimensiones del grupo de Lorentz. No se inserta en el grupo de las gauges. Tiene D-comas con 0, 2, 4, 6, y ocho dimensiones espaciales. Tipo IIB: Esta es una teoría semejante a la descrita anteriormente, o sea, con cuerdas cerradas e idéntica supersimetría. Sin embargo, en este caso, los dos gravitinos tienen los mismos chirales bajo diez dimensiones del grupo de Lorentz, o sea, se trata de una teoría chiral. También no es gauge, pero contiene D-comas con –1, 1, 3, 5, y 7 dimensiones espaciales. SO(32) Heterótica: Se trata de un modelo teórico fundamentado con cuerdas cerradas, en que los campos de la hoja del mundo se mueven en una dirección con supersimetría y, en la dirección opuesta, sin ese tipo de simetría. El resultado es una supersimetría N = 1 en diez dimensiones. Los campos sin supersimetría, constituyen los vectores sin masa de los bosones; en consecuencia, se trata de una teoría que requiere de una simetría gauge SO(32) para anular las perturbaciones. E8 x E8 Heterótica: Esta teoría es idéntica a la descrita precedentemente, excepto que corresponde al grupo E8 x E8 de las gauges que, junto con el SO(32), son los únicos permitidos para anular las perturbaciones o anomalías

  15. La Teoría de Supercuerdas necesita diez dimensiones, y más, para describir nuestro Universo. La razón no es simple, pero es así. Cuando se teoriza la existencia de seis dimensiones adicionales, el físico teórico está pensando en una diminuta cuerda que se encuentra compactada y enrollada dentro de un pequeñísimo espacio de 10-33 cm, lo que, por su tamaño, hace muy difícil poder detectar las dimensiones de dicha cuerda. Pero fundamentos en la Naturaleza, como para pensar que puede darse esa condición, existen. La idea de las dimensiones extras para un Universo considerado tetradimensional, no es nueva, sino que se extrae de la teoría de Theodoro Kaluza y de Oskar Klein. Este mecanismo es reconocido por los físicos como Teoría o Compactificación de Kaluza-Klein. Kaluza, que, en su trabajo original, demostraba que comenzando desde la Relatividad General con un espaciotiempo pentadimensional, al elevarse encima de un círculo una de las dimensiones, se llegaba a las cuatro dimensiones relativistas. Ello se daba debido a que se trataba de una teoría gauge U (1), en que U (1) corresponde al grupo de rotaciones alrededor de un círculo. De las cinco Teorías de Supercuerdas, hasta el año 1995 la heterótica E8 x E8 fue considerada la más prometedora para describir la Física más allá del Modelo Estándar. Descubierta en 1987 por Gross, Harvey, Martinec, y Rohm, fue considerada, por mucho tiempo, como la única Teoría de Cuerdas que podría llegar a describir nuestro Universo. Se pensaba así debido a que el grupo gauge del modelo estándar SU(3) x SU(2) x U(1) se puede insertar con facilidad dentro del grupo gauge E8

  16. SUPERGRAVEDAD                 La Supergravedad es una ampliación imaginativa de la Teoría de la Gravedad de Einstein, que la convertía en Teoría Supersimétrica Al hacer cálculos cuánticos utilizando la Teoría de la Supergravedad, los teóricos descubrieron, sorprendidos, que los infinitos que plagaban la teoría de la gravedad anterior, que sólo consideraba el gravitón, en su mayoría se anulaban con infinitos iguales y contrarios                 En 1978, Eugene Cremmer y Bernard Julia, dos físicos matemáticos franceses, realizaron un descubrimiento interesante al combinar la idea de Kaluza-Klein con la Teoría de la Supergravedad. Hay ocho teorías de la Supergravedad, de las que la supergravedad N = 1 es la más simple, con sólo los campos del gravitón y el gravitino, y la N = 8 la más compleja, con 163 campos diferentes. Cremmer y Julia percibieron que si la supergravedad N = 1 se aborda en un espacio de once dimensiones (en vez de cuatro) y se supone que 7 de esas once dimensiones son compactas a la Kaluza-Klein, y las cuatro restantes son las grandes dimensiones espaciotemporales, la teoría resultante en esas cuatro dimensiones es la supergravedad N = 8. Una teoría de supergravedad N = 1 simple, de once dimensiones, se convierte así en la complicada teoría de la supergravedad N = 8 de cuatro

  17. En 1995, Edward Witten presentó amplias evidencias matemáticas de que las cinco teorías obtenidas de la primera revolución de la Teoría de Cuerdas, junto con la Supergravedad en once dimensiones, eran de hecho parte de una teoría inherentemente cuántica y no perturbativa conocida como "Teoría M" (de las palabras misterio, magia o matriz). Las seis teorías están conectadas entre sí por una serie de simetrías de dualidad T, S y U.

  18.                También en la teoría propugnada por Witten se encuentran implícitas muchas evidencias de que la Teoría M no es sólo la suma de las partes, pero igual se hace difícil saber cuál podría ser su estructura definitiva. La idea que concita una mayor aceptación de los teóricos es de que la estructura cuántica de la Teoría M podría estar dada por unos objetos matemáticos conocidos como matrices. Se trata de una idea que fue propuesta en 1996 por T. Banks, W. Fischer, S. Shenker y L. Susskind. A su vez, las simetrías de dualidad que se aplica en las distintas estructuraciones que se han venido dando para la Teoría M, requieren de cuerdas que ahora llamamos D-comas o D-branas, extendidas en varias dimensiones, donde los extremos de las cuerdas pueden terminar. A principios de 1997, A. Strominger y C. Vafa utilizaron las D-comas como estados cuánticos del campo gravitacional en ciertas clases de agujeros negros, logrando reproducir con clara precisión matemática, y por primera vez, las propiedades termodinámicas de Bekenstein y Hawking.

  19. La teoría M fue formulada partiendo de los principios hipotéticos de la Teoría de Supergravedad denominada 11-dimensional, y para un estadio cosmológico de baja energía. Su configuración gráfica está constituida por un circulito membranoso y 5-comas como solitones, pero no tiene cuerdas. Ahora aparece la pregunta: entonces, ¿cómo se puede estructurar laTeoría insertando las cuerdas? : Compactificando la Teoría M 11-dimensional en un diminuto círculo con el objeto de conseguir una teoría de diez dimensiones. Si tomamos una membrana con una topología de protuberancias redondeadas e insertamos una de sus dimensiones en el círculo compactificado, éste se convertirá en una cuerda cerrada. Cuando el círculo llega a ser muy pequeño, recuperamos la supercuerda de tipo IIA.

  20. Vafa recientemente añadió un extraño giro cuando introdujo otra Megateoría, esta vez una teoría de 12 dimensiones llamada Teoría F “father”, padre en inglés, la cual explica la autodualidad de la cuerda IIb. (Por desgracia, esta teoría de 12 dimensiones es bastante extraña: tiene dos coordenadas temporales, no una, y de hecho viola la relatividad de 12 dimensiones Schwarz, por ejemplo, cree que la versión final de la Teoría M puede incluso no tener una dimensión fija. Piensa que la verdadera teoría puede ser independiente de cualquier dimensionalidad del espacio-tiempo, y que solo emergen 11 dimensiones una vez que se intenta resolver. Townsend parece estar de acuerdo cuando dice “la noción completa de dimensionalidad es una aproximación que solo emerge en algunos contextos semiclásicos”. Por lo tanto, ¿esto significa que el final está a la vista, que algún día cercano derivaremos el Modelo Estándar de sus principios básicos? Duff dice, “¿Es la Teoría M simplemente una Teoría de SuperMembranas y súper 5-branas que requiere alguna (aún desconocida) cuantización no perturbativa, o (como cree Witten) los grados de libertad subyacentes a la Teoría M están aún por descubrir?. ” Witten ciertamente cree que estamos en la pista adecuada, pero necesitamos algunas “revoluciones” más como esta para resolver de una vez por todas la teoría. “Pienso que aún hay un par más de revoluciones de supercuerdas en el futuro, como mínimo. Si podemos conseguir una revolución de supercuerdas más en esta década, creo que irá todo bien”, dice. Vafa añade: “Espero que esto sea la ‘luz al final del túnel’ pero ¡quién sabe cómo de largo es el túnel!”. Schwarz, además, ha escrito sobre la Teoría M: “Si está basada en algo geométrico (como supermembranas) o algo completamente diferente, aún no lo sabemos. En cualquier caso, encontrarlo podría ser un hito en la historia intelectual de la Humanidad”.

  21. Itzhak Bars de la Universidad de California del Sur es un físico teórico respetado cuyas publicaciones sobre la unificación de interacciones, teoría de cuerdas ylas torsiones de Penrose son muchas y de autoridad. Desde 1996, sospecha que uno de los últimos ingredientes no sería sino una segunda dimensión temporal compactada. De hecho, casi al mismo tiempo, Cumrun Vafa había subrayado que una de las cincoTeorías de Cuerdas posibles unificadas a las otras por la teoría M sólo lo era de una manera bastante artificial, al añadirle una dimensión temporal más, todo resultaba mucho mejor. Edward Witten, el padre de la teoría M (que acababa de introducir), permaneció bastante escéptico ante la teoría F (Father, "padre" en inglés) de Vafa. Para él no se trataba sino de un ardid matemático sin más VAFA

  22. Itzhak Bars escribió entonces ecuaciones similares a las del Modelo Estándar, pero en un espacio-tiempo de 4 dimensiones espaciales y de dos dimensiones temporales. En términos técnicos, escribió un lagrangiano con los mismos grupos de Gauge que los del Modelo Estándar, pero encerrando campos de neutrinos, un campo de Higgs cuya masa no está dada y un campo escalar. Compactando según las teorías de Kaluza-Klein para volver a las tres dimensiones espaciales y una temporal, obtuvo siguientes los resultados: • El término del lagrangiano de CromodinámicaCuántica responsable de una violación CP no observada queda automáticamente excluido. Ya no es necesario “matar” este término de modo ad hoc introduciendo una nueva partícula inobservada: el axión. • La masa del Higgs y, sobre todo, la ruptura de la simetría del Modelo electrodébil, el cual debería observarse con el LHC, están bajo el control de un campo escalar identificable con el célebre dilatón de la Teoría de Cuerdas. Esto es importante ya que, potencialmente, si la Teoría de Cuerdas es exacta, habría predicciones demostrables a bajas energías de esta teoría. • Habría neutrinos diestros pero sólo se acoplarían débilmente mediante el campo de Higgs a otras partículas. Entonces podrían ser candidatos a la materia oscura.

  23. Predicciones de esta índole se mantendrían en el marco de la Teoría M y de la aún más especulativa Teoría F. Salvo que se pase entonces a un espacio-tiempo de 13 dimensiones: 11 espaciales y 2 temporales. La introducción de dos dimensiones temporales podría conducir a paradojas con la causalidad, algunas de las cuales podrían resultar fatales para la teoría. También hay problemas potenciales con la Mecánica Cuántica y la reducción del paquete de ondas. Es difícil decir si se trata de un simple ardid de cálculo, como el empleo de funciones complejas en las teorías ondulatorias clásicas, o si realmente en nuestro Universo hay dos dimensiones temporales. En todo caso sólo explorando esta vía se podrán descubrir las propiedades ocultas de las ecuaciones de la Física en un espacio-tiempo más “convencional”.

  24. LA MISTERIOSA TEORIA M FIN LA MADRE DE LAS SUPERCUERDAS

More Related