1 / 56

Derivative of carboxylic acids (1) Acid halide

Derivative of carboxylic acids (1) Acid halide. Nomenclature. باستبدال حرف e من اسم alkane بـ oyl halide. alkanoyl halide Alkane. - أو من اسم الحمض باستبدال ic بـ yl chloride. Preparations. Chemical reactions. Reaction of acid chloride with R-MgX. Hell volhard zelinski.

bedros
Download Presentation

Derivative of carboxylic acids (1) Acid halide

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Derivative of carboxylic acids (1) Acid halide Nomenclature • باستبدال حرف e من اسمalkane بـ oyl halide alkanoyl halideAlkane - أو من اسم الحمض باستبدالic بـ yl chloride

  2. Preparations Chemical reactions

  3. Reaction of acid chloride with R-MgX Hell volhard zelinski • Acid anhydride (2)

  4. التسمية تتم بذكر اسم الحمض متبوعاً بكلمــة anhydride Preparation ( 1 ) From acid chloride

  5. From acetylene (2) From ketene(3)

  6. Chemical reactions Amide (3) • التسمية تتم بذكر اسمalkane محذوفاً منه حرف eواستبداله بـ amideأو اسم الحمض محذوفاً منه oicواستبدالها بـamide

  7. Preparation of amides From acid chloride, anhydride, ester (1) From nitriles (2)

  8. From ammonium salt ( 3 ) Chemical reactions Hydrolysis ( 1 ) Hofmann degradation of amide( 2 )

  9. Q. Convert acetic acid to methyl amine الإجابـة Dehydration ( 3 ) ( 4 ) Action of nitrous acid

  10. Esters (4) - التسمية تتم كالآتي:- 1- ذكر اسمR` 2- ذكر اسم الحمض محذوفاً منه-icومضافاً اليهate

  11. Ortho ester Fats esters e.g.

  12. Preparation

  13. Reactions of esters Reaction with Grignard to form t-alc

  14. Mechanism Claisen condensation of ester

  15. Mechanism

  16. Substituted products of monocyclic acids 1. Halogenated acids تقسم الى α ، β ، γ ،δ على حسب موقع الهالوجين. Preparation of α-halo acid • Hell-Volhard-Zelinski reaction

  17. Iodo derivative can be prepared as follow 2. From α-hydroxy acid preparation of β-halogenated acid • لاحظ الإضافة تتم عكس قاعدة ماركنكوف في حاله اتصال سلسله alkene • بمجموعهالدهيد أو كيتونأو -COOH

  18. 2. From hydroxy acid Preparation of γ-Halogenated acid Reactions of Halogenated acid Effect of NaOH on Halogenated acids 1. Effect of NaOH on α-Halo acid 2. Effect of NaOH on β -Halo acid

  19. 3. Effect of NaOH on γ – and δ-Halo acid (B) Hydroxy acids - تقسم الى α ، β ، γ ،δ على حسب موقع OH - أسماء يجب حفظها

  20. Preparation of Hydroxyacids 1) Preparation ofα-hydroxy acid • From halogenated acid • 2. From aldehyde or ketones

  21. 2) Preparation of β-hydroxy acid Reformatsky reaction 3)Preparation of γ & δ-hydroxy acids

  22. Chemical reactions • Action of heat 1- α-hydroxy acid 2- β-hydroxy acid

  23. 3- γ-hydroxy acid or δ-hydroxy acid 2) Action of PCl3 3) Reduction with HI

  24. (C) Amino acids Preparation of amino acids

  25. (2) Streacker’s synthesis (3) Gaberial synthesis • Gaberial synthesis can be used for synthesis amino acids & amines • a) For synthesis of amino acids e.g. Glycine

  26. Question: Convert Phthalimide to Glycine ? Reaction of amino acids 1) Amphoteric character of amino acid Amino acids are amphoteric because it contains both acidic –COOH group and basic group –NH2 , thus it is present in an inner salt (B) which is called Zeitter ion In acidic medium it exist in (C) In basic medium it exist in (A) Isoelectric point of amino acid It is the pH at which the amino acid exists as the inner salt (B)

  27. 2) Reactions of amino group • a) Conversion to hydroxy acid b) Acetylation

  28. 3) Effect of heat 1- α-amino acid 2- β-Amino acid

  29. 3- γ- Amino acid or δ- Amino acid Dicarboxlic acids Examples

  30. General methods of preparation of dicarboxylic acids:- • oxidation of glycols: 2. hydrolysis of dinitriles:

  31. Special methods: Oxalic acid: • Heating sodium formate: 2. By passing dry CO2 over sodium metal heated to 360°

  32. 3. By the oxidation of sucrose with conc. HNO3 in the presence of V2O5. Malonic acid:

  33. Preparation of diethylmalonate: Diethylamalonate is much more important than the acid.

  34. Succinic acid can also be prepared by reduction of malic and tartaric acids with HI and red P.

  35. Glutaric acid: • By the action of methylene iodide on ethylmalonate.

  36. 2. Oxidative fission of cyclopentanone with nitric acid in the presence of V2O5. Adipic acid: • Catalytic air oxidation of cyclohexane obtained from petroleum.

  37. 2. Oxidative fission of cyclohexanol or cyclohexanone by nitric acid at 30-40°. Phthalic acid:- Is prepared by the catalytic oxidation of naphthalene or o-xylene

  38. Reactions: • Dicarboxylic acids show the same characteristic reactions • as monocarboxylic acids. 2. Effect of heat acids of the type :b) Malonic acid where X is strongly electron attracting (e.g. –COOH, -CONH2, -COOR, -COR, -CHO, -CN, -NO2) lose CO2 even on mild heating.

  39. (C) Succinic and glutaric acids yield the corresponding cyclic anhydrides. Heating adipic acid with Ba(OH)2, MnCO3 or the O2 give cyclopentanone.

  40. (e) Phthalic acid form phthalic anhydride on heating at 200°. Unsaturated and substituted acids Nomenclature: Ordinary methods of nomenclature can be applied to substituted acids, but many acids have trival names.

  41. Preparation: • Maleic acid: (a) Rapid heating of malic acid to about 250°. (b) Catalytic air oxidation of benzene at 400°.

  42. (c) Air oxidation of crotonaldehyde. 2. Fumaric acid and malic acid:

  43. 3. Tartaric acid: : Cyanohydrin synthesis from glyoxal (1) (2) from dibromosuccinic acid

  44. (3) Oxidation of maleic acid with neutral KMnO4 4. Citric acid: 1- From 1,3-dichloroacetone:

  45. 1,3-Dichloroacetone can be prepared by treating glycerol with HCl followed by oxidation. Reactions: 1- Addition of HX to α,β-unsaturated acids give β-haloacids.

  46. 2- Diels-Alder Reaction.

  47. 3- Heating tartaric acid gives pyruvic acid. 4- Heating citric acid to 175oC gives aconitic acid.

More Related