1 / 28

3 He (In-flight K - , N) 反応による K - pp 生成スペクトル

KEK「原子核・ハドロン物理:横断研究会」 2007年 11 月 19 日  KEK. 3 He (In-flight K - , N) 反応による K - pp 生成スペクトル. 小池 貴久 理研 仁科センター 原田 融 大阪電気通信大学. Many calculations support the existence of K - pp deeply-bound state, although B.E. and G are not converged theoretically.

bella
Download Presentation

3 He (In-flight K - , N) 反応による K - pp 生成スペクトル

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. KEK「原子核・ハドロン物理:横断研究会」 2007年11月19日 KEKKEK「原子核・ハドロン物理:横断研究会」 2007年11月19日 KEK 3He (In-flight K-, N) 反応によるK-pp生成スペクトル 小池 貴久 理研 仁科センター 原田 融 大阪電気通信大学

  2. Many calculations support the existence of K-pp deeply-bound state, although B.E. and G are not converged theoretically. ◆ Theoretical works for K-pp deeply-bound state ・ Nogami: First prediction Phys. Lett. 7 (1963) 288. ・ Yamazaki & Akaishi: First quantitative few-body calculation by ATMS method B.E. = 48 MeV, G = 61 MeV PLB535(2002)70. ・Shevchenko, Gal & Mares (+ Revai): KNN-pSN coupled channel Faddeev calculation B.E. = 55-70 MeV, G = 95-110 PRL 98(2007)082301, PRC76(2007)044004. ・ Ikeda & Sato: KNN-pSN c.c. Faddeev calculation B.E. = 79 MeV, G = 74 MeV PRC 76(2007)035203. ・ Dote & Weise (+Hyodo): AMD / Simple corralated. model arXiv:nucl-th/070150. ・ Nishikawa & Kondo: Skyrmion model arXiv:hep-ph/0703100. ・Arai, Yasui & Oka: L* N model arXiv:0705. 3936[nucl-th] ・ Yamagata, Hirenzaki et al.: Chiral unitary model talk atJPS 2007Spring, Chiral07 ・ Noda, Hirenzaki et al.: Rearrangement-channel Gaussian talk at JPS 2007Autum

  3. ◆ Experimental search for K-pp deeply-bound state ・ FINUDA collaboration at DAFNE: “K-pp” → L + p invariant-mass spectroscopy using stopped K- reaction on 6Li, 7Li, 12C. Reported: B.E. = 115 MeV G = 67 MeV PRL94 (2005) 212303. ・ Magas, Oset, Ramos & Toki : critical view; NOT “K-pp” bound state, BUTFSI after two-nucleon absorption. K- + ”pp” → L + p p + N → p’ + N’ PRC74 (2006)025206. … still controversial.

  4. Simultaneous mesurement ◆ New measurement for searching “K-pp” M. Iwasaki, T. Nagae et al. , J-PARC E15 experiment 3He(In-flight K-, n) “K-pp” missing-mass spectroscopy + “K-pp” →Lp → p-pp invariant-mass spectroscopy Our purpose: Theoretical calculation of 3He(In-flight K-, n) inclusive/semi-exclusive spectra within the DWIA framework using Green’s function method. Ref: T. Koike and T. Harada, Phys. Lett. B652 (2007)262-268.

  5. ◆Distorted-Wave Impulse Approximation (DWIA) Strength function Kinematical factor Fermi-averaged ementary cross-section n(K-,n)K- in lab. system Morimatsu & Yazaki’s Green function method Green’s function with K--“pp” optical potential recoil effect Distorted wave for incoming(+)/outgoing(-) particles → Eikonal app. neutron hole wave function → (0s)3 h.o. model

  6. ◆ Momentum transfar ◆ Kinematical Factor pK- pn(>pK-) K- n n K- p p q p p

  7. ; K- escape ; K- conversion When , K- conversion into channel 1 ; ◆ Decomposition of strength function the conversion part can be further decomposed as . . . etc.

  8. ; Pole contribution e.g. pole contribution ; of conversion part into channel 1 . . . etc. ◆ Decomposition of Green’s function Then, another decomposition of the strength fucntion can be made;

  9. ◆ Yamazaki-Akaishi’sK--”pp” optical potential Ref. PLB535 (2002) 70. V0 = -300 MeV W0 = -70 MeV b = 1.09 fm Schordinger Energy → B.E. = 51 MeV, G = 68 MeV ( Klein-Gordon Energy)

  10. Energy-independent pot. Energy -dependent pot. ◆ Phase space factor f (E) Ref. J. Mares, E. Friedman, A. Gal, PLB606 (2005) 295. ・ f1(E) : 1-body abs. K + N → S /L + p ・ f2(E) :2-body abs. K + “NN” → S /L +N ・ f(E) = 0.8 f1(E) + 0.2 f2(E) Ref. J. Yamagata, H. Nagahiro, S. Hirenzaki, PRC74 (2006) 014604.

  11. ◆ Optical potential strength parameter ・Set 1: Yamazaki-Akaishi’s optical potential: 1-a. Energy-independent 1-b. Energy-dependent V0 = -300 MeVV0 = -300 MeV W0 = -70 MeV W0 = -93 MeV× f (E) → B.E. = 51 MeV, G = 68 MeVRef. PLB535(2002)70. ・Set 2: simulate Shevcenko-Gal-Mares’s Faddeev cal.: 2-a. Energy-independent 2-b. Energy-dependent V0 = -350 MeVV0 = -350 MeV W0 = -100 MeV W0 = -165 MeV× f (E) → B.E. = 72 MeV, G = 115 MeVRef. PRL 98(2007)082301. c.f.similar Faddeev cal. by Ikeda-Sato B.E. = 79 MeV, G = 74 MeV Ref. PRC 76(2007)035203

  12. 3He(In-flight K-,n), pK-= 1.0 GeV/c, qn = 0o V0 = -300 MeV W0 = -70 MeV B.E. = 51 MeV, G = 68 MeV using Yamazaki-Akaishi’s optical potential

  13. ◆ Enegy-indep. vs. energy-dep. potential : YA case pK = 1 GeV/c qn = 0o S p decay threshold

  14. ◆ Decomposiiton of spectrum: YA case pK = 1 GeV/c qn = 0o K- conversion 1-body abs. K- escape 2-body abs. from bound state 2-body abs.

  15. 3He(In-flight K-,n), pK-= 1.0 GeV/c, qn = 0o V0 = -350 MeV W0 = -100 MeV B.E. = 72 MeV, G = 115 MeV simulate Shevcenko-Gal-Mares’s Faddeev calculation. Ref: PRL 98(2007)082301.

  16. ◆ Enegy-indep. vs. energy-dep. pot. : SGM case pK = 1 GeV/c qn = 0o S p decay threshold

  17. ◆ Decomposiiton of spectrum : SGM case pK = 1 GeV/c qn = 0o K- conversion 1-body abs. K- escape 2-body abs. from bound state 2-body abs.

  18. Energy-independentpotential

  19. V0 = -300 MeV V0 = -340 MeV V0 = -360 MeV V0 = -380 MeV V0 = -400 MeV W0 = -93 MeV (fix) 1.0 0.0 Energy-dependent potential EK-pp (MeV)

  20. V0 = -300 MeV V0 = -340 MeV V0 = -360 MeV V0 = -380 MeV V0 = -400 MeV W0 = -93 MeV (fix) 0.8 0.2 Energy-dependent potential EK-pp (MeV)

  21. V0 = -300 MeV V0 = -340 MeV V0 = -360 MeV V0 = -380 MeV V0 = -400 MeV W0 = -93 MeV (fix) Dashed lines: 1-body abs. Solid lines: 2-body abs. 0.8 0.2 Energy-dependent potential EK-pp (MeV)

  22. W0 = -60 MeV W0 = -100 MeV W0 = -140 MeV W0 = -180 MeV V0 = -360 MeV (fix) 1.0 0.0 Energy-dependent potential EK-pp (MeV)

  23. W0 = -60 MeV W0 = -100 MeV W0 = -140 MeV W0 = -180 MeV V0 = -360 MeV (fix) 0.8 0.2 Energy-dependent potential EK-pp (MeV)

  24. W0 = -60 MeV W0 = -100 MeV W0 = -140 MeV W0 = -180 MeV V0 = -360 MeV (fix) Dashed lines: 1-body abs. Solid lines: 2-body abs. 0.8 0.2 Energy-dependent potential EK-pp (MeV)

  25. 1.00 f1(E) + 0.00 f2(E) 0.95 f1(E) + 0.05 f2(E) 0.90 f1(E) + 0.10 f2(E) 0.80 f1(E) + 0.20 f2(E) V0 = -350 MeV (fix) W0 = -165 MeV (fix) a b Energy-dependent potential EK-pp (MeV)

  26. Dashed lines: 1-body abs. Solid lines: 2-body abs. 1.00 f1(E) + 0.00 f2(E) 0.95 f1(E) + 0.05 f2(E) 0.90 f1(E) + 0.10 f2(E) 0.80 f1(E) + 0.20 f2(E) V0 = -350 MeV (fix) W0 = -165 MeV (fix) a b Energy-dependent potential EK-pp (MeV)

  27. ◆ Summary ・ 山崎・赤石の計算 (B.E. ~ 50 MeV) に従えば、K-pp 生成ピーク がはっきりと観測できることが期待される。 この場合、 B.E. が KN → p S崩壊しきい値 (~100 MeV) より 十分小さいので、スペクトルのピーク構造はしきい値効果の 影響を受けない。 ・Shevchenko-Gal-Mares (及び池田・佐藤)の Faddeev 計算が 示唆するように、 B.E.が p S崩壊しきい値に近づく場合、 K-pp 生成シグナルはしきい値におけるカスプ的構造として現れる。 幅が小さく、かつ2体吸収過程への分岐比が小さければ、  1体吸収過程がカスプ的構造を形成する。 幅が大きい時 and/or 2体吸収過程への分岐比が大きい時は 2体吸収過程がカスプ的構造を形成する。 幅が非常に大きくても、 2体吸収過程のカスプ的構造は残る。

  28. ◆今後の課題 ・ Phase space factor を用いた single-channel ポテンシャルモデル   は coupled-channel モデルと consistent か? → Coupled-channel DWIA の枠組による計算で確かめる必要    がある。 ・ 2体吸収過程に関して、K中間子原子で測定された約 20%の  分岐比をこの反応にそのまま適用することは適切か?  → 2体吸収過程のエネルギー依存性、密度依存性を調べる    必要がある。

More Related