1 / 13

C. R. Lindo Carrión

Unidad IV Circuitos Acoplados Magnéticamente. Clase Práctica 1. C. R. Lindo Carrión. 1. Objetivos. Utilizar el fenómeno de acoplamiento magnético en los circuitos eléctricos.

Download Presentation

C. R. Lindo Carrión

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Unidad IV Circuitos Acoplados Magnéticamente Clase Práctica 1 C. R. Lindo Carrión C. R. Lindo Carrión 1

  2. Objetivos Utilizar el fenómeno de acoplamiento magnético en los circuitos eléctricos. Utilizar adecuadamente el modelo del transformador ideal y las relaciones de corriente , voltaje y potencia que lo caracterizan. Utilizar las relaciones de corriente, voltaje y potencia de losAutotransformadores y Transformadores trifásicos. Contenido Ejemplos resueltos utilizando el fenómeno de acoplamiento magnético y las ecuaciones del transformador ideal. Ejemplos resueltos aplicando las relaciones de corriente, voltaje y potencia en los autotransformadores y transformadores trifásicos. C. R. Lindo Carrión

  3. Encuentre las corrientes I1, I2 y el voltaje de salida Vo en la red que se muestra en la Figura 30. Ejemplo Solución Aplicando LKV a la malla 1 se tiene: (4 + j4)I1 +jI2 = -24|0o Aplicando LKV a la malla 2 se tiene: jI1 + (2 +j4)I2 = 0 Despejando I1 en función de I2 en esta ecuación se tiene: Insertándola en la primera ecuación se tiene: (-4 + j2)(4 + j4)I2 +jI2 = -24|0o C. R. Lindo Carrión

  4. (-24 – j8)I2 +jI2 = -24|0o (-24 – j7)I2 = -24 Ahora podemos encontrar I1 Entonces Vo es: Vo = (– j4)I2 = 3.84|-106.26º V C. R. Lindo Carrión

  5. Para el circuito mostrado en la Figura 31, encuentre el voltaje Vs, si el voltaje Vo = 10|0o V. Ejemplo Solución Como el voltaje de salida es conocido entonces la corriente del secundario es: I2 =(10|0o/2) = 5|0o A Entonces el voltaje del secundario es: V2 = I2(2 – j2) = 14.14|-45º V Usando la razón de transformación, el voltaje del primario es: C. R. Lindo Carrión

  6. La corriente del primario es: I1= nI2 = 10|0o A Por lo tanto el voltaje de la fuente es: Vs = I1(2) + V1 = 20|0o + 7.07|-45º = 25.5|-11.31º V C. R. Lindo Carrión

  7. Para el circuito mostrado en la Figura 32, encuentre la corriente I. Ejemplo Solución Primero haremos una transformación de fuentes en el primario y luego lo transferimos al secundario como se muestra en las siguientes Figuras. C. R. Lindo Carrión

  8. Ahora podemos aplicar la LKC al nodo superior de –j4 y lo llamaremos V, así la corriente I será: C. R. Lindo Carrión

  9. Así la corriente I será: C. R. Lindo Carrión

  10. Un transformador de dos devanados de 36KVA, 2400/240 V, se conectará como autotransformador para suministrar 2160V a una carga. Dibuje un esquema de conexión del transformador y determine la clasificación en KVA del autotransformador. Ejemplo Solución Nos piden |S1|, para ello necesitamos la corriente I1. Entonces la clasificación en KVA del autotransformador es: C. R. Lindo Carrión

  11. Un transformador de dos devanados de 440/110 V, clasificado a 20KVA, se conecta como se muestra en la Figura 33. Determine el voltaje V2 y la clasificación en KVA del transformador en la configuración mostrada. Ejemplo Solución El voltaje de la carga será: V2 = 440V – 110V = 330V Para determinar la clasificación en KVA del transformador necesitamos la corriente I2, así: C. R. Lindo Carrión

  12. Un transformador trifásico balanceado esta clasificado a 240 /208Y Vrms, El transformador sirve a una carga trifásica balanceada que consume 12.5KVA con fp 0.8 atrasado. La magnitud del voltaje de línea en la carga es 200 Vrms y la impedancia de línea es 0.1 + 0.2 Ω. Encuentre la magnitud de la corriente de línea y la magnitud del voltaje de línea en el primario del transformador. Ejemplo Solución Podemos dibujar el circuito como se muestra en la Figura 34 C. R. Lindo Carrión

  13. Ya que S =3VLIL entonces la corriente de línea es: Si ahora suponemos que VAN = (200/3)|0o V y como el factor de potencia es 0.8 atrasado, el ángulo de la corriente  = -cos-1(0.8) = -36.9º, entonces la corriente IA’A = 36.08|-36.87Arms. Entonces el voltaje de fase A’N’ es: VA’N’ = (0.1 + j0.2)IA’A + 115.47|0o VA’N’ = (0.22|63.43o)(36.08|-36.87º) + 115.47|0o = 122.74|1.69º V Así el voltaje de línea en el primario es: C. R. Lindo Carrión

More Related