1 / 20

SPACE PENETRATORS FOR SOLAR SYSTEM EXPLORATION

SPACE PENETRATORS FOR SOLAR SYSTEM EXPLORATION. Igone Urdampilleta. 29 May 2014, UCM, Madrid. Contents . What is a Space Penetrator? Internal Architecture Heritage Scientific Motivation Possible targets : Moon Mars Europa Summary References. What is a Space Penetrator ?.

berny
Download Presentation

SPACE PENETRATORS FOR SOLAR SYSTEM EXPLORATION

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SPACE PENETRATORS FOR SOLAR SYSTEM EXPLORATION IgoneUrdampilleta 29 May 2014, UCM, Madrid

  2. Contents • What is a Space Penetrator? • Internal Architecture • Heritage • Scientific Motivation • Possible targets: • Moon • Mars • Europa • Summary • References

  3. What is a Space Penetrator? • Low mass projectile to sample and analyze the surface and subsurface of a planet or satellite • Mass ~5-20kg • Dimensions ~0.5mx0.2m • High impact speed ~200-500m/s • Very tough ~10.000-50.000g • Penetrate surface ~0.2-3m • Sand (Martian Soil) and Ice (Icy body) tests • 300m/s, 24.000g Courtesy of UkPenetratror Consortium, [1]

  4. Internal Architecture -Descent Camera -Auxiliary Systems -Instrumentations: 1. Environment 2. Geophysics (surface/chemistry) 3. Geophysics (interior) Mass spectrometer: volatiles and biologically important species Radiation sensor: Subsurface dose rate, age and material decay Magnetometers: possible internal ocean Batteries/RHU Accelerometers Power Communications Processing Micro-seismometers: Determine existence of interior oceans, structure and seismic activity Accelerometers: Surface and Subsurface material (harness/composition) Thermal sensor: Subsurface T, regolith T and heat flow Batteries/RHU, Data logger Drill assembly: Subsurface mineralogy and material Gowen,R. et al, IPPW7, 2010

  5. Heritage • Deep Space 2 and Mars 96 failed • Lunar-A (space qualified) and MoonLITE cancelled • Mars 96 • Deep Space 2 Courtesy of NASA [3] Courtesy of Russian Space [4] • Russian Space Forces • Mission to Mars • Launched in 1996 • Failed to leave Earth orbit • NASA mission launched in 1999 • Mission to Mars • Mars Polar Lander with 2 DS2 • Reached Mars, but no comms

  6. Scientific Motivation • In-situ astrobiological and geophysical investigation • In-situ subsurface chemical inventory • Direct characterization of landing site • Synergy with orbiting instrument data • Advantages: • Hardly accessible sites • Simpler architecture • Cost effective: • Low mass • High instruments heritage • Similar payload for many surfaces • Disadvantages: • High impact survivability • Compact and low mass payload • Limited lifetime (only batteries)

  7. Possible Targets • Rocky and icy bodies

  8. Moon: Lunar-A • Space qualified mission cancelled in 2007 • Objectives: Lunar interior by seismic and heat-flow experiments • Payload:2 penetrators (near and far side) • Mass:~45kg with PDS • V~285m/s, Impact ~ 8000g, Depth~1-3m Courtesy of ISAS/JAXA

  9. Moon: MoonLITE • MoonLITE: Moon Lightweight Interior and Telecoms Experiment (UK) • Objectives: Lunar seismic environment, polar water, volatiles and ISRU • Payload: 4 penetrators • Near side Apollo landing • Two Polar regions • Far side • Duration: >1year for seismic network • Mass: ~13kg +23kg propulsion • V~300cm/s Gao, Y. et al 2007 Gowen,R. et al, DOI EJSM/Laplace

  10. Mars: METNET Courtesy of FMI [5] • Atmospheric Mission to Mars • Objectives: • Seismic activity and internal structure • Meteorological and environment study • MEIGA, METNETprecursor -> INTA and UCM • Inflatable Entry and Descent System (16.8kg): • IBU (Inflatable Braking Unit) • AIBU (Additional IBU) Courtesy of FMI [5]

  11. Mars: MetNet Courtesy of FMI [5] • 3. Composition and Structure devices • Magnetometer • Atmospheric Instruments • MetBaro-Presure • MetHumi-Humidity • Temperature Sensor • 2. Optical Devices • PatCam • MetSis-Irradiance • Dust Sensor

  12. Europa: EJSM • EJSM:Europa-Jupiter System Mission (JUICE) • Space Penetrator Objectives: • The internal structure and its dynamics • The existence and characteristics of subsurface ocean • Astrobiology markers • Harder ice impact material, faster body • Mass: ~14.3kg +50kg PDS • Long: ~31cm Gowen,R. et al, IPPW7, 2010 Courtesy of Astrium

  13. Summary • Low mass projectile for planetary exploration (rocky and icy bodies) • In-situ analysis and sampling of environment and subsurface • Cost effective technology • Multi-landing sites or multi-target missions • No successful mission yet • Recent increase of Technology Readiness Level (TRL)

  14. References • Kato,M., Current Status of JapananisePenetratorMission, ISAS/JAXA • H Mizutani et al 2005, J. Earth Syst. Sci. 114, No. 6 • Gao,Y. et al 2007, DGLR Int. Symp. “To Moon and beyond”, Bremen, Germany • Gowem, R. et PenetratorConsortium, 2008, Penetratorfor TSSM, TSSM Meeting, Monrovia • Gowen, R. et PenetratorConsortium, 2009, AnUpdateonMoonLITE, EGU, Viena • Gowen, R. et PenetratorConsortium, 2009, AstrobiologycalSignatureswithPenetratorson Europa, BiosignaturesonExoplanetsWorkshop, Mulhouse • Gowen, R. et PenetratorConsortium, 2010, Potential Applications of Micro-Penetrators within the Solar System,IPPW7, Barcelona • Skulionva, M. et al 2011, World Academic of Science, Engineering and Technology, Vol. 55 • Gowen, R. et al, SurfaceElementPenetrators, DOI to EJSM/Laplace

  15. References • LINKS • [1] ESA: http://sci.esa.int/future-missions-office/52782-high-speed- • tests-demonstrate-space-penetrator-concept/ • [2] UK PENETRATOR CONSORTIUM: http://www.mssl.ucl.ac.uk/ • planetary/missions/ Micro_Penetrators.php • [3] DS2:http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id= • DEEPSP2 • [4] MARS 96: http://www.russianspaceweb.com/mars96.html • [5] METNET: http://metnet.fmi.fi/index.php • [6] MEIGA: http://meiga-metnet.org/ • [7] EUROPA PENETRATOR:http://www.youtube.com/ • watch?v=o1A04qzXCgQ

  16. THANK YOU FOR YOUR ATTENTION

  17. Space Penetrator Descent Sequence Spin-Down 1. Descent Module release from Orbiter 2. Cancel orbital velocity Reorient Penetrator Separation 5. PDS fly away prior to surface Impact 3. Re-orient 4. PDS (Penetrator Delivery System) separation from penetrator Gowen,R. et al, DOI EJSM/Laplace 6. Operate from below surface Delivery sequence courtesy SSTL

  18. Moon • Characteristics: • Telluric satellite • No atmosphere, no plate tectonics • >30.000 impact craters >1km • Dark zones (maria): • - craters, younger, 15% area • Bright zones (terrae): • + craters, older, 85% area • Science Objectives (Gao,Y. et al 2007): • Volatiles in the shadowed lunar craters • Lunar seismology: interior and core • In-situ resources, ISRU (water ice/radiation/quakes) • Planetary penetrator demonstrator

  19. Mars • Characteristics: • Telluric planet • Atmosphere • No plate tectonics • Changing topography due to seasonal variation and dust storms • Polar ice caps • Science objectives: • Seismic activity and internal structure • Astrobiology markers from depths >2m • Meteorological and environment study • Possible landing sites: • Polar caps • <40º for seismic network

  20. Europa • Characteristics: • Water-icy satellite • Atmosphere-trace Oxygen • Strong tidal forces • Lower slopes/smoother surface • Less regolith (young) • Possible subsurface ocean • Habitable? Life? • Science objectives (Gowen,R. et al, DOI EJSM/Laplace) : • The internal structure and its dynamics • The existence and characteristics of subsurface ocean • Bio-signatures and Environment in near-surface • Synergy data with remote sensing

More Related