210 likes | 442 Views
SPACE PENETRATORS FOR SOLAR SYSTEM EXPLORATION. Igone Urdampilleta. 29 May 2014, UCM, Madrid. Contents . What is a Space Penetrator? Internal Architecture Heritage Scientific Motivation Possible targets : Moon Mars Europa Summary References. What is a Space Penetrator ?.
E N D
SPACE PENETRATORS FOR SOLAR SYSTEM EXPLORATION IgoneUrdampilleta 29 May 2014, UCM, Madrid
Contents • What is a Space Penetrator? • Internal Architecture • Heritage • Scientific Motivation • Possible targets: • Moon • Mars • Europa • Summary • References
What is a Space Penetrator? • Low mass projectile to sample and analyze the surface and subsurface of a planet or satellite • Mass ~5-20kg • Dimensions ~0.5mx0.2m • High impact speed ~200-500m/s • Very tough ~10.000-50.000g • Penetrate surface ~0.2-3m • Sand (Martian Soil) and Ice (Icy body) tests • 300m/s, 24.000g Courtesy of UkPenetratror Consortium, [1]
Internal Architecture -Descent Camera -Auxiliary Systems -Instrumentations: 1. Environment 2. Geophysics (surface/chemistry) 3. Geophysics (interior) Mass spectrometer: volatiles and biologically important species Radiation sensor: Subsurface dose rate, age and material decay Magnetometers: possible internal ocean Batteries/RHU Accelerometers Power Communications Processing Micro-seismometers: Determine existence of interior oceans, structure and seismic activity Accelerometers: Surface and Subsurface material (harness/composition) Thermal sensor: Subsurface T, regolith T and heat flow Batteries/RHU, Data logger Drill assembly: Subsurface mineralogy and material Gowen,R. et al, IPPW7, 2010
Heritage • Deep Space 2 and Mars 96 failed • Lunar-A (space qualified) and MoonLITE cancelled • Mars 96 • Deep Space 2 Courtesy of NASA [3] Courtesy of Russian Space [4] • Russian Space Forces • Mission to Mars • Launched in 1996 • Failed to leave Earth orbit • NASA mission launched in 1999 • Mission to Mars • Mars Polar Lander with 2 DS2 • Reached Mars, but no comms
Scientific Motivation • In-situ astrobiological and geophysical investigation • In-situ subsurface chemical inventory • Direct characterization of landing site • Synergy with orbiting instrument data • Advantages: • Hardly accessible sites • Simpler architecture • Cost effective: • Low mass • High instruments heritage • Similar payload for many surfaces • Disadvantages: • High impact survivability • Compact and low mass payload • Limited lifetime (only batteries)
Possible Targets • Rocky and icy bodies
Moon: Lunar-A • Space qualified mission cancelled in 2007 • Objectives: Lunar interior by seismic and heat-flow experiments • Payload:2 penetrators (near and far side) • Mass:~45kg with PDS • V~285m/s, Impact ~ 8000g, Depth~1-3m Courtesy of ISAS/JAXA
Moon: MoonLITE • MoonLITE: Moon Lightweight Interior and Telecoms Experiment (UK) • Objectives: Lunar seismic environment, polar water, volatiles and ISRU • Payload: 4 penetrators • Near side Apollo landing • Two Polar regions • Far side • Duration: >1year for seismic network • Mass: ~13kg +23kg propulsion • V~300cm/s Gao, Y. et al 2007 Gowen,R. et al, DOI EJSM/Laplace
Mars: METNET Courtesy of FMI [5] • Atmospheric Mission to Mars • Objectives: • Seismic activity and internal structure • Meteorological and environment study • MEIGA, METNETprecursor -> INTA and UCM • Inflatable Entry and Descent System (16.8kg): • IBU (Inflatable Braking Unit) • AIBU (Additional IBU) Courtesy of FMI [5]
Mars: MetNet Courtesy of FMI [5] • 3. Composition and Structure devices • Magnetometer • Atmospheric Instruments • MetBaro-Presure • MetHumi-Humidity • Temperature Sensor • 2. Optical Devices • PatCam • MetSis-Irradiance • Dust Sensor
Europa: EJSM • EJSM:Europa-Jupiter System Mission (JUICE) • Space Penetrator Objectives: • The internal structure and its dynamics • The existence and characteristics of subsurface ocean • Astrobiology markers • Harder ice impact material, faster body • Mass: ~14.3kg +50kg PDS • Long: ~31cm Gowen,R. et al, IPPW7, 2010 Courtesy of Astrium
Summary • Low mass projectile for planetary exploration (rocky and icy bodies) • In-situ analysis and sampling of environment and subsurface • Cost effective technology • Multi-landing sites or multi-target missions • No successful mission yet • Recent increase of Technology Readiness Level (TRL)
References • Kato,M., Current Status of JapananisePenetratorMission, ISAS/JAXA • H Mizutani et al 2005, J. Earth Syst. Sci. 114, No. 6 • Gao,Y. et al 2007, DGLR Int. Symp. “To Moon and beyond”, Bremen, Germany • Gowem, R. et PenetratorConsortium, 2008, Penetratorfor TSSM, TSSM Meeting, Monrovia • Gowen, R. et PenetratorConsortium, 2009, AnUpdateonMoonLITE, EGU, Viena • Gowen, R. et PenetratorConsortium, 2009, AstrobiologycalSignatureswithPenetratorson Europa, BiosignaturesonExoplanetsWorkshop, Mulhouse • Gowen, R. et PenetratorConsortium, 2010, Potential Applications of Micro-Penetrators within the Solar System,IPPW7, Barcelona • Skulionva, M. et al 2011, World Academic of Science, Engineering and Technology, Vol. 55 • Gowen, R. et al, SurfaceElementPenetrators, DOI to EJSM/Laplace
References • LINKS • [1] ESA: http://sci.esa.int/future-missions-office/52782-high-speed- • tests-demonstrate-space-penetrator-concept/ • [2] UK PENETRATOR CONSORTIUM: http://www.mssl.ucl.ac.uk/ • planetary/missions/ Micro_Penetrators.php • [3] DS2:http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id= • DEEPSP2 • [4] MARS 96: http://www.russianspaceweb.com/mars96.html • [5] METNET: http://metnet.fmi.fi/index.php • [6] MEIGA: http://meiga-metnet.org/ • [7] EUROPA PENETRATOR:http://www.youtube.com/ • watch?v=o1A04qzXCgQ
Space Penetrator Descent Sequence Spin-Down 1. Descent Module release from Orbiter 2. Cancel orbital velocity Reorient Penetrator Separation 5. PDS fly away prior to surface Impact 3. Re-orient 4. PDS (Penetrator Delivery System) separation from penetrator Gowen,R. et al, DOI EJSM/Laplace 6. Operate from below surface Delivery sequence courtesy SSTL
Moon • Characteristics: • Telluric satellite • No atmosphere, no plate tectonics • >30.000 impact craters >1km • Dark zones (maria): • - craters, younger, 15% area • Bright zones (terrae): • + craters, older, 85% area • Science Objectives (Gao,Y. et al 2007): • Volatiles in the shadowed lunar craters • Lunar seismology: interior and core • In-situ resources, ISRU (water ice/radiation/quakes) • Planetary penetrator demonstrator
Mars • Characteristics: • Telluric planet • Atmosphere • No plate tectonics • Changing topography due to seasonal variation and dust storms • Polar ice caps • Science objectives: • Seismic activity and internal structure • Astrobiology markers from depths >2m • Meteorological and environment study • Possible landing sites: • Polar caps • <40º for seismic network
Europa • Characteristics: • Water-icy satellite • Atmosphere-trace Oxygen • Strong tidal forces • Lower slopes/smoother surface • Less regolith (young) • Possible subsurface ocean • Habitable? Life? • Science objectives (Gowen,R. et al, DOI EJSM/Laplace) : • The internal structure and its dynamics • The existence and characteristics of subsurface ocean • Bio-signatures and Environment in near-surface • Synergy data with remote sensing