170 likes | 328 Views
“ Status of GPU trigger ”. Gianluca Lamanna (INFN) On behalf of GAP collaboration. TDAQ, Liverpool, 28.8.2013. Two problems to use GPU in the trigger. Computing power : Is the GPU fast enough to take trigger decision at tens of MHz events rate ? Elena -> Use with the RICH
E N D
“Status of GPU trigger” Gianluca Lamanna (INFN) On behalf of GAP collaboration TDAQ, Liverpool, 28.8.2013
Twoproblems to use GPU in the trigger • Computing power: Is the GPU fast enough to take trigger decision at tens of MHz events rate? • Elena -> Use with the RICH • Jacopo -> Use with the Straw • Latency: Is the GPU latency per event small enough to cope with the tiny latency of a low level trigger system in HEP? Is the latency stable enough for usage in synchronous trigger systems?(Felice, Roberto, me + Alessandro, Piero, Andrea, etc.)
GPU processing VRAM • Example: packet with 1404 B (20 events in NA62 RICH application) • T=0 NIC GPU PCI express chipset CPU RAM us 0
GPU processing VRAM NIC GPU PCI express chipset CPU RAM us 0 10
GPU processing VRAM NIC GPU PCI express chipset CPU RAM us 0 10 99
GPU processing VRAM NIC GPU PCI express chipset CPU RAM 104 us 0 10 99
GPU processing VRAM NIC GPU PCI express chipset CPU RAM 104 134 us 0 10 99
GPU processing VRAM NIC GPU PCI express chipset CPU RAM 104 139 134 us 0 10 99
GPU processing • The latency due to the data transfer from data source to the system is more important than the latency due to the computing on the GPU • It scales almost linearly (apart from the overheads) with the data size while the latency due to the computing can be hidden exploiting the huge resources. • Communication latency fluctuations quite big (~50%). VRAM NIC GPU PCI express chipset CPU RAM 104 139 134 us 0 10 99
Twoapproaches: PF_RING driver VRAM NIC GPU PCI express chipset CPU RAM Fast packet capturing from standard NIC (PF_RING from ntop) The data are written directly on the user space memory. Skip redundant copy in the kernel memory space. Both for 1 Gb/s and 10 Gb/s Latency fluctuations could be reduced using RTOS( Mauro P.). Host/kernel parallelized with three concurrent streaming.
Tests 1 Gb/s NIC PC TEL62 GPU lpt Scope Start Stop 1 Stop 2 • Dual processor PC: • XEON E5-2620 2Ghz • I350T2 Gigabit card • 32 GB • GPU K20c (2496 cores) PCIe v2 x16 Events simulated in TEL62 Grouped in MTP Start signal rises with the first event in the MTP First stop: arriving of the packet Buffering in the PC RAM (buffer depth can be changed (GMTP)) Second stop: after execution on GPU (single ring reconstruction kernel) The precision of the method as been evaluated as better than 1us
Data transfer time ~80B/event Using PF_RING the latency (and the fluctuations) due to packet handling in the NIC are highly reduced.
GPU computing time It’s better to accumulate a big number of events (GMTP) in order to exploit the computing cores available in the GPU.
Total latency 256 GMTP 256 GMTP NA62 latency Total latency: Start on last GMTP event • Latency timeout not implemented yet. Total latency: Start on first GMTP event
Twoapproaches: NANET NANET • NANET based on the Apenet+ card (collaboration with the Apenet group of Rome INFN). • Additional UDP protocol offload • First not-NVIDIA device having P2P connection with a GPU. • Joint development with NVIDIA. • Preliminary version implemented on Altera DEV4 dev board with PCIX8 Gen2 (Gen3 under study). • Modular structure: the link can be replaced (1 Gb/s, 10 Gb/s, SLINK, GBT,…)
NANET data trasfer performances Test with system loopback (data produced on the same PC and sent through standard NIC to NANET). The 50usplateau in the latency is mainly due to the NIC used for data transmission. Full bandwidth in 1 Gb/s. 10Gb/s version will be ready soon.
Best performance with apenet link Faster than Infiniband for GPU-GPU transmission. Latency at level of 8us with Apenet Link. Link implemented on high-speed daughter card: in principle several types of links can be implemented (GBT, PCI express (Gianmaria), Infiniband,…)