1 / 24

Observational Cosmology - a unique laboratory for fundamental physics

Observational Cosmology - a unique laboratory for fundamental physics. Marek Kowalski Physikalisches Institut Universität Bonn. Outline. Introduction Cosmological probes Cosmological c onstraints. The standard model of cosmology : ΛCDM. Ingredients of ΛCDM: Cosmological constant

betrys
Download Presentation

Observational Cosmology - a unique laboratory for fundamental physics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ObservationalCosmology- a uniquelaboratoryfor fundamental physics Marek Kowalski Physikalisches Institut Universität Bonn

  2. Outline • Introduction • Cosmologicalprobes • Cosmologicalconstraints

  3. Thestandardmodel of cosmology: ΛCDM Ingredients of ΛCDM: • Cosmologicalconstant • Cold Dark Matter • Baryons • 3 light neutrinoflavors • Ampl. of primord.fluctuations • Index of power spectrum

  4. Thestandardmodel of cosmology: ΛCDM Beyondthestandardmodel: • Non-Λdarkenergy • Hot dark matter, e.g. massive neutrinos • Additional relativisticspecies, e.gextra neutrinospecies • Tensorperturbations & runningspectralindex ⇒ physics of Inflation

  5. CosmologicalProbes: Selectednewresults

  6. CosmicMicrowave Background New groundbaseddata from: South Pole Telescope (SPT) & Atacama CosmologyTelescope (ACT) WMAP ACT – 6 m telescope Planck: 2009 - 2011

  7. CosmicMicrowave Background WMAP: 2001 - ? WMAP New groundbaseddata: from South Pole Telescope & Atacama Cosmologytelescope SPT CMB fit with forground; SPT-afterfilter w/o forground 4σ detections of CMB weaklensing!

  8. Galaxy Clusters CMB footprint X-rayfootprint Picture credit: ESA

  9. CountingGalaxy Clusters Vikhlini et al. ApJ, 2009 Upcomingsurveys: eROSITA, DES, ...

  10. Supernova Hubble Diagram A bit brighter M fainterthan expected Norm. Supernova Cosmology Project Suzuki et al, 2011 • HST • NIR sensitity • 25 z>1 SNe Ia • SNLS @CFHT • 3 yeardata • ~300 SNe Ia • 0.2<z<1

  11. Efficient HST surveyfor z>1 SNe Survey of z>0.9 galaxyclusters ⇒ SNefromcluster & field ⇒ about 2 x moreefficient ⇒ enhencement of earlyhosts ⇒ 20 new HST SNe ⇒ 10 high quality z>1 SNe! Supernova Cosmology Project Suzuki et al., 2011

  12. BaryonAcousticOscillation Acoustic „oscillation“ lenghscalefrom CMB visible in thedistribution of galaxies ⇒ Standard ruler of cosmology. Sloan Digital Sky Survey

  13. BaryonAcousticOscillation Acoustic „oscillation“ lenghscalefrom CMB visible in thedistribution of galaxies ⇒ Standard ruler of cosmology. WiggleZsurvey – Blake et al, 2011

  14. BaryonAcousticOscillation Acoustic „oscillation“ lenghscalefrom CMB visible in thedistribution of galaxies ⇒ Standard ruler of cosmology. Promisingtechnique & muchactivity: BOSS, HETDEX,...

  15. CosmologicalConstraints: Selectednewresults

  16. ΛCDM SNe (Union 2.1, Suzuki et. al, 2011) BAO (Percival et. al, 2010) CMB (WMAP-7 year data, 2010) Supernova Cosmology Project Suzuki et al., 2011 ΩΛ=0.729 ± 0.014 and allowing for curvature: Ωk=0.002 ± 0.005

  17. Dark Energy Supernova Cosmology Project Suzuki et al., 2011 Equation of state: p=wρ Constant w: w=-0.995±0.078 cosmological constant

  18. Dark Energy Supernova Cosmology Project Suzuki et al., 2011 Equation of state: p=wρ Constant w: w=-0.995±0.078 Redshiftdependent w: w(a)=w0+(1-a)xwa Λ cosmological constant No deviationfrom w=-1 (i.e. Λ)

  19. Constraints on Inflation parameters e.g. Chaotic Inflation (Linde, 1983) Power spectrum of curvatureperturbations Tensor-to-scalarratio (r) Scalarspectralindex* Tensor-to-scalarratio* Spectraltilt* ns =0.966±0.011 r<0.21 dns/dlnk=-0.024±0.013 *SPT+ WMAP7 (Keisler et al. 2011), constraintsaremodeldependent

  20. Number of relativisticspecies (neutrinos!) CMB (& BaryonNucleosynthesis) sensitive to number of neutrinospeciesNeff SPT+WMAP7: Neff= 3.85±0.62

  21. Neutrino massfrom CMB & large scalestructure Damping of correlation power due to freestreaming at epoch of radiation-matterequality: Tegmark et al. 2004 Combination of CMB+BAO+H0: e.g. Komatsu et al (2010) Similarmassbounds also for LSND-like sterile neutrinos Hamann et al (2010)

  22. Summary • Cosmologytodayisaboutprecision • Multiple probesforhighestsensitivity • ΛCDM looksstrong, however, physicsbeyondthestandardmodelmight just bearoundthecorner • Manynewsurveyscommited, hencetremendousprogressexpected!

  23. Redshiftdependent EOS A floating non-SNe bin to decouple low from high-redshift constraints Assuming step-wise constant w:

More Related