1 / 38

Observational Cosmology - a laboratory for fundamental physics

Observational Cosmology - a laboratory for fundamental physics. MPI-K, Heidelberg 24.11.2011 Marek Kowalski . Outline. Introduction Cosmological probes Cosmological constraints. Our Cosmological Framework derives from…. Observation: The Universe is Expanding

luna
Download Presentation

Observational Cosmology - a laboratory for fundamental physics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ObservationalCosmology - a laboratoryfor fundamental physics MPI-K, Heidelberg 24.11.2011 Marek Kowalski

  2. Outline • Introduction • Cosmologicalprobes • Cosmologicalconstraints

  3. Our Cosmological Framework derives from… Observation: The Universe is Expanding Principles: Homogeneous, isotropic Theory: General Relativity Friedman Equation, which governs expansion

  4. Our Cosmological Framework derives from… Observation: The Universe is Expanding Principles: Homogeneous, isotropic Theory: General Relativity Friedman Equation, which governs expansion Matter Density

  5. Our Cosmological Framework derives from… Observation: The Universe is expanding Principles: Homogeneous, isotropic Theory: General Relativity Friedman Equation, which governs expansion Matter Density Cosmological Constant/ Dark Energy

  6. Our Cosmological Framework derives from… Observation: The Universe is expanding Principles: Homogeneous, isotropic Theory: General Relativity Friedman Equation, which governs expansion Matter Density Cosmological Constant/ Dark Energy Curvature

  7.  M 1998: Discovery of Dark Energy

  8. Nobel prizeforphysics2011

  9. Nobel prizeforphysics2011

  10. Thestandardmodel of cosmology: ΛCDM Ingredients of ΛCDM: • Cosmologicalconstant • Cold Dark Matter • Baryons • 3 light neutrinoflavors • Ampl. of primord. fluctuations • Index of power spectrum

  11. Thestandardmodel of cosmology: ΛCDM Beyondthestandardmodel: • Non-Λdarkenergy • Hot dark matter, e.g. massive neutrinos • Additional relativisticspecies, e.gextra neutrinospecies • Tensorperturbations & runningspectralindex ⇒ physics of Inflation

  12. CosmologicalProbes: Selectednewresults

  13. CosmicMicrowave Background New groundbaseddata from: South Pole Telescope (SPT) & Atacama CosmologyTelescope (ACT) WMAP ACT – 6 m telescope Planck: 2009 - 2011

  14. CosmicMicrowave Background New groundbaseddata from: South Pole Telescope (SPT) & Atacama CosmologyTelescope (ACT) WMAP WMAP: 2001 - ? SPT CMB fit with forground; SPT-afterfilter w/o forground 4σ detections of CMB weaklensing

  15. Galaxy Clusters CMB footprint X-rayfootprint Picture credit: ESA First scienceresults of Planck (A&A, 2011)

  16. SNeIa Hubble Diagram A bit brighter M fainterthen expected normalization •  M • 1 0 • 0.72 0.28 • 0 1 Supernova Cosmology Project (SCP)Kowalski et al. (2008) fainter

  17. SNeIa Hubble Diagram •  M • 1 0 • 0.72 0.28 • 0 1 Supernova Cosmology Project (SCP)Kowalski et al. (2008) HST SNLS Essence fainter SDSS PanStarrs PTF SNF CfA

  18. SNe at large Redshifts (z>1)

  19. HST Survey of Clusters with z ≥ 1 Survey of z>0.9 galaxyclusters ⇒ SNefromcluster & field ⇒ about 2 x moreefficient ⇒ enhencement of earlyhosts ⇒ 20 new HST SNe ⇒ 10 high quality z>1 SNe! Cycle 14, 219 orbits (PI S. Perlmutter) 24 clusters from RCS, RDCS,IRAC, XMM Supernova Cosmology Project Suzuki et al., 2011

  20. HST Survey of Clusters with z ≥ 1 Supernova Cosmology Project Suzuki et al., 2011

  21. HST Survey of Clusters with z ≥ 1 Union 2.1 - 580 SNe

  22. BaryonAcousticOscillation Acoustic „oscillation“ lenghscalefrom CMB visible in thedistribution of galaxies ⇒ Standard ruler of cosmology. Sloan Digital Sky Survey

  23. BaryonAcousticOscillation Acoustic „oscillation“ lenghscalefrom CMB visible in thedistribution of galaxies ⇒ Standard ruler of cosmology. WiggleZsurvey – Blake et al, 2011

  24. BaryonAcousticOscillation Acoustic „oscillation“ lenghscalefrom CMB visible in thedistribution of galaxies ⇒ Standard ruler of cosmology. Promisingtechnique & muchactivity: BOSS, HETDEX,...

  25. CosmologicalConstraints: Selectednewresults

  26. ΛCDM SNe (Union 2.1, Suzuki et. al, 2011) BAO (Percival et. al, 2010) CMB (WMAP-7 year data, 2010) Supernova Cosmology Project Suzuki et al., 2011 ΩΛ=0.729 ± 0.014 and allowing for curvature: Ωk=0.002 ± 0.005

  27. Whynow? Matter: r R-3 Vakuum Energy: r = constant Fundamental Problems of VacuumEnergy/CosmologicalConstant: • Why so small? • Expectation: rL ~ (Mplanck)4 • 120 orders of magnitudes larger thentheobservedvalue! Dark Energy with equation-of-state: p=wr (p = pressure; r = density)  ρ R -3(1+w)

  28. Dark Energy Supernova Cosmology Project Suzuki et al., 2011 Equation of state: p=wρ Constant w: w=-0.995±0.078 cosmological constant

  29. Dark Energy Supernova Cosmology Project Suzuki et al., 2011 Equation of state: p=wρ Constant w: w=-0.951±0.078 Redshiftdependent w: w(a)=w0+(1-a)xwa Wa = 0.14±0.68 Λ cosmological constant No deviationfrom w=-1 (i.e. Λ)

  30. Redshiftdependent EOS A floating non-SNe bin to decouple low from high-redshift constraints Assuming step-wise constant w: ~20% improved constraints

  31. Constraints on Inflation parameters e.g. Chaotic Inflation (Linde, 1983) Power spectrum of curvatureperturbations

  32. Constraints on Inflation parameters e.g. Chaotic Inflation (Linde, 1983) Power spectrum of curvatureperturbations Tensor-to-scalarratio (r) Scalarspectralindex ns =0.966±0.011 Tensor-to-scalarratio r<0.21 scalarspectralindex (ns) SPT+ WMAP7 (Keisler et al. 2011)

  33. Number of relativisticspecies (neutrinos!) CMB (& BaryonNucleosynthesis) sensitive to number of neutrinospeciesNeff SPT+WMAP7: Neff= 3.85±0.62 (68% CL)

  34. Neutrino massfrom CMB & large scalestructure Damping of correlation power due to freestreaming at epoch of radiation-matterequality: Tegmark et al. 2004 Combination of CMB+BAO+H0: e.g. Komatsu et al (2010) Similarmassbounds also for LSND-like sterile neutrinos Hamann et al (2010)

  35. Summary • Cosmology today is about precision • Multiple probes for highest sensitivity • ΛCDM looks strong so far – despite interpretational problems with dark energy • Many new surveys committed, hence significant progress expected!

  36. CountingGalaxy Clusters Vikhlini et al. ApJ, 2009 Upcomingsurveys: eROSITA, DES, ...

  37. Redshiftdependent EOS A floating non-SNe bin to decouple low from high-redshift constraints Assuming step-wise constant w:

More Related