380 likes | 509 Views
Observational Cosmology - a laboratory for fundamental physics. MPI-K, Heidelberg 24.11.2011 Marek Kowalski . Outline. Introduction Cosmological probes Cosmological constraints. Our Cosmological Framework derives from…. Observation: The Universe is Expanding
E N D
ObservationalCosmology - a laboratoryfor fundamental physics MPI-K, Heidelberg 24.11.2011 Marek Kowalski
Outline • Introduction • Cosmologicalprobes • Cosmologicalconstraints
Our Cosmological Framework derives from… Observation: The Universe is Expanding Principles: Homogeneous, isotropic Theory: General Relativity Friedman Equation, which governs expansion
Our Cosmological Framework derives from… Observation: The Universe is Expanding Principles: Homogeneous, isotropic Theory: General Relativity Friedman Equation, which governs expansion Matter Density
Our Cosmological Framework derives from… Observation: The Universe is expanding Principles: Homogeneous, isotropic Theory: General Relativity Friedman Equation, which governs expansion Matter Density Cosmological Constant/ Dark Energy
Our Cosmological Framework derives from… Observation: The Universe is expanding Principles: Homogeneous, isotropic Theory: General Relativity Friedman Equation, which governs expansion Matter Density Cosmological Constant/ Dark Energy Curvature
M 1998: Discovery of Dark Energy
Thestandardmodel of cosmology: ΛCDM Ingredients of ΛCDM: • Cosmologicalconstant • Cold Dark Matter • Baryons • 3 light neutrinoflavors • Ampl. of primord. fluctuations • Index of power spectrum
Thestandardmodel of cosmology: ΛCDM Beyondthestandardmodel: • Non-Λdarkenergy • Hot dark matter, e.g. massive neutrinos • Additional relativisticspecies, e.gextra neutrinospecies • Tensorperturbations & runningspectralindex ⇒ physics of Inflation
CosmologicalProbes: Selectednewresults
CosmicMicrowave Background New groundbaseddata from: South Pole Telescope (SPT) & Atacama CosmologyTelescope (ACT) WMAP ACT – 6 m telescope Planck: 2009 - 2011
CosmicMicrowave Background New groundbaseddata from: South Pole Telescope (SPT) & Atacama CosmologyTelescope (ACT) WMAP WMAP: 2001 - ? SPT CMB fit with forground; SPT-afterfilter w/o forground 4σ detections of CMB weaklensing
Galaxy Clusters CMB footprint X-rayfootprint Picture credit: ESA First scienceresults of Planck (A&A, 2011)
SNeIa Hubble Diagram A bit brighter M fainterthen expected normalization • M • 1 0 • 0.72 0.28 • 0 1 Supernova Cosmology Project (SCP)Kowalski et al. (2008) fainter
SNeIa Hubble Diagram • M • 1 0 • 0.72 0.28 • 0 1 Supernova Cosmology Project (SCP)Kowalski et al. (2008) HST SNLS Essence fainter SDSS PanStarrs PTF SNF CfA
HST Survey of Clusters with z ≥ 1 Survey of z>0.9 galaxyclusters ⇒ SNefromcluster & field ⇒ about 2 x moreefficient ⇒ enhencement of earlyhosts ⇒ 20 new HST SNe ⇒ 10 high quality z>1 SNe! Cycle 14, 219 orbits (PI S. Perlmutter) 24 clusters from RCS, RDCS,IRAC, XMM Supernova Cosmology Project Suzuki et al., 2011
HST Survey of Clusters with z ≥ 1 Supernova Cosmology Project Suzuki et al., 2011
HST Survey of Clusters with z ≥ 1 Union 2.1 - 580 SNe
BaryonAcousticOscillation Acoustic „oscillation“ lenghscalefrom CMB visible in thedistribution of galaxies ⇒ Standard ruler of cosmology. Sloan Digital Sky Survey
BaryonAcousticOscillation Acoustic „oscillation“ lenghscalefrom CMB visible in thedistribution of galaxies ⇒ Standard ruler of cosmology. WiggleZsurvey – Blake et al, 2011
BaryonAcousticOscillation Acoustic „oscillation“ lenghscalefrom CMB visible in thedistribution of galaxies ⇒ Standard ruler of cosmology. Promisingtechnique & muchactivity: BOSS, HETDEX,...
CosmologicalConstraints: Selectednewresults
ΛCDM SNe (Union 2.1, Suzuki et. al, 2011) BAO (Percival et. al, 2010) CMB (WMAP-7 year data, 2010) Supernova Cosmology Project Suzuki et al., 2011 ΩΛ=0.729 ± 0.014 and allowing for curvature: Ωk=0.002 ± 0.005
Whynow? Matter: r R-3 Vakuum Energy: r = constant Fundamental Problems of VacuumEnergy/CosmologicalConstant: • Why so small? • Expectation: rL ~ (Mplanck)4 • 120 orders of magnitudes larger thentheobservedvalue! Dark Energy with equation-of-state: p=wr (p = pressure; r = density) ρ R -3(1+w)
Dark Energy Supernova Cosmology Project Suzuki et al., 2011 Equation of state: p=wρ Constant w: w=-0.995±0.078 cosmological constant
Dark Energy Supernova Cosmology Project Suzuki et al., 2011 Equation of state: p=wρ Constant w: w=-0.951±0.078 Redshiftdependent w: w(a)=w0+(1-a)xwa Wa = 0.14±0.68 Λ cosmological constant No deviationfrom w=-1 (i.e. Λ)
Redshiftdependent EOS A floating non-SNe bin to decouple low from high-redshift constraints Assuming step-wise constant w: ~20% improved constraints
Constraints on Inflation parameters e.g. Chaotic Inflation (Linde, 1983) Power spectrum of curvatureperturbations
Constraints on Inflation parameters e.g. Chaotic Inflation (Linde, 1983) Power spectrum of curvatureperturbations Tensor-to-scalarratio (r) Scalarspectralindex ns =0.966±0.011 Tensor-to-scalarratio r<0.21 scalarspectralindex (ns) SPT+ WMAP7 (Keisler et al. 2011)
Number of relativisticspecies (neutrinos!) CMB (& BaryonNucleosynthesis) sensitive to number of neutrinospeciesNeff SPT+WMAP7: Neff= 3.85±0.62 (68% CL)
Neutrino massfrom CMB & large scalestructure Damping of correlation power due to freestreaming at epoch of radiation-matterequality: Tegmark et al. 2004 Combination of CMB+BAO+H0: e.g. Komatsu et al (2010) Similarmassbounds also for LSND-like sterile neutrinos Hamann et al (2010)
Summary • Cosmology today is about precision • Multiple probes for highest sensitivity • ΛCDM looks strong so far – despite interpretational problems with dark energy • Many new surveys committed, hence significant progress expected!
CountingGalaxy Clusters Vikhlini et al. ApJ, 2009 Upcomingsurveys: eROSITA, DES, ...
Redshiftdependent EOS A floating non-SNe bin to decouple low from high-redshift constraints Assuming step-wise constant w: