130 likes | 395 Views
Anaerobic Conditioning Some Thoughts For Team Sports. Dr. Moran EXS 558 11.16.05. Lecture Outline. Review Physiological Adaptations from Anaerobic Training Training Specificity Examples (Basketball, Football) Anaerobic Conditioning Exercises. Physiology Review. Training Specificity.
E N D
Anaerobic ConditioningSome Thoughts For Team Sports Dr. Moran EXS 558 11.16.05
Lecture Outline • Review • Physiological Adaptations from Anaerobic Training • Training Specificity • Examples (Basketball, Football) • Anaerobic Conditioning Exercises
Training Specificity • Training Design • It if first necessary to determine the energy demands of the athletes you are coaching • GOAL: to bring each athlete to their optimal level of conditioning for their SPECIFIC event • Sport Energy Demands • Limited research studies have been conducted on team sports such as football or basketball • Studies have been conduced analyzing • Intensity of exercise • # of consecutive plays • # of grouped plays • Length of rest between plays • These descriptive activity measures can be used to construct a more meaningful training program
Energy RequirementsBasketball • McInnes et al. (1995) • 8 movement categories • 997±183 changes in a 48 min basketball game • Change of movement every 2 seconds • Movement breakdown • Shuffle = 34.6% • Running = 31.2% • Jumps = 4.6% • Standing/Walking = 29.6% • High intensity movement every 21 seconds • High intensity movement = 15% of total playing time • HR > 85% for 75% of actual playing time • HR > 95% for 15% of actual playing time • [Blood Lactate] = 6.8±2.8 mmol
Energy RequirementsBasketball • Hoffman et al. (1996) • Speed and anaerobic performance variables were positively correlated with increased playing time • Therefore training should contain a large amount of anaerobic conditioning • Research Study
Methods of Assessing Anaerobic Power • Anaerobic capacity • maximal amount of ATP resynthesized via anaerobic metabolism (by the whole organism) during a specific mode of short-duration maximal exercise • Despite problems interpreting the physiological meaning of maximal blood lactate levels (due primarily to acute changes in blood volume), this measure is still used in both research and athletic settings to describe anaerobic capacity. Its use is supported by (a) the high correlations observed between maximal blood lactate and short-duration exercise performance presumably dependent upon anaerobic capacity, and (b) the higher maximal blood lactate values observed in sprint and power athletes (who would demonstrate higher anaerobic capacities) compared with endurance athletes or untrained people • Anaerobic Power(unit = watts) • Power = (F*D)/T • F force generated • D distance over which force is applied • T time required to perform work • Wingate Anaerobic Power Test • Typically performed on a cycle ergometer because power can be measured in precise units • Evaluates both ATP-PC and glycolytic energy system • Designed to determine the power of both peak anaerobic power and mean power output over 30 seconds. • Peak anaerobic power is determined based on the peak number of revolutions performed during any single 5-second interval of the test, and represents the power of the ATP- CP system. • Mean anaerobic power is determined based on the number of revolutions performed over the entire 30 seconds, and represents the maximal capacity to produce to produce ATP via a combination of the ATP-CP and glycolytic systems. • The decline in power output over 30 seconds and can be used as an index of fatigue, and is usually expressed as a percentage of peak anaerobic power. • Good for cyclying but can you apply to sprinting?
Methods of Assessing Anaerobic Power(con’t) • Football Field Test • “40” • Indirect measure of ATP-PC system • Margaria-Kalamen Power Test • Explanation of Test • Factors affecting test (abstract) • Sargeant Jump Test • Vertical jump • Line Test (basketball)
Energy RequirementsFootball • Specific responsibilities vary considerably between positions • BUT all players must perform maximally each play • Energy Requirements • 90% ATP-PC (over-estimate?) • Remaining contribution from glycolytic energy system • Kraemer & Gotshalk 2000 • Specific Demands • D-III Game
Anaerobic Exercise PrescriptionFootball • Kraemer & Gotshalk 2000 • College Game • Average play ≈ 5.5s (range 1.87-12.88) • Average rest ≈ 32.7s • Optimal Work/Rest Ratio • 1/5 • Incorporate “successful” and “unsuccesful” drive • (Plisk & Gambetta 1997) • A Physiological Review of American Football • Pincivero & Bompa (1997)
A Physiologic Review of American Football • Is 32.7 seconds enough time to fully replenish PC? • PC supply depleted after about 30 seconds • ½ recovered in 20-30 seconds • Last ½ could take another 20 minutes • Takahashi et al. (1995): following isolated quad exercises PC stores replenished ranged from 55-90 seconds • There may be a greater reliance on glycolytic than the 10% as has been previously reported
Cardiovascular Fitness for Football? • VO2 max • College football players have similar values as age-matched controls • Would adding a cardiovascular component help players? • Majority of injuries occur in the 2nd and 4th quarter • Endurance training has been shown to allow athletes the ↑ ability to replenish intramuscular PC following a severe quadriceps activity (Takahashi et al. 1995) • Prevent injuries • Reduce heat illnesses in summer training • Healthier life after football
Anaerobic Conditioning Exercises • These are intended to improve “speed-endurance” • Interval Sprints • Work/Rest ratio can be manipulated • Can be performed on a track or playing surface • Standing start or Flying start • Creative: repetition relays • Effect on Anaerobic Capacity • Fartlek • Alternating sprint with jogging used as a rest • Creative: “indian” runs