280 likes | 545 Views
Nuclear Structure addressed at GSI/RISING M.G órska, GSI Darmstadt. Univ. Santiago de Compostela Univ. Madrid Univ. Valencia. Univ. Surrey CLRC Daresbury Univ. Keele Univ. Liverpool Univ. Manchester Univ. Paisley Univ. York. FZ Juelich FZ Rossendorf GSI Darmstadt
E N D
Nuclear Structure addressed at GSI/RISING M.Górska, GSI Darmstadt • Univ. Santiago • de Compostela • Univ. Madrid • Univ. Valencia • Univ. Surrey • CLRC Daresbury • Univ. Keele • Univ. Liverpool • Univ. Manchester • Univ. Paisley • Univ. York • FZ Juelich • FZ Rossendorf • GSI Darmstadt • HMI Berlin • TU/LMU Muenchen • MPI Heidelberg • TU Darmstadt • Univ. Bonn • Univ. Koeln • Univ. Milano • INFN Genova • INFN Legnaro • INFN/Univ. Napoli • INFN/Univ. Padova • Univ. Camerino • Univ. Firenze • IFIN, Bucharest • CEA Saclay • CSNSM Orsay • GANIL Caen • IPN Orsay • KTH Stockholm • Univ. Lund • Univ. Uppsala • IFJ Krakow • IPJ Swierk • Univ. Krakow • Univ. Warszawa • KU Leuven Rare Isotope Spectroscopic INvestigation at GSI: Oct. 2003-2009 • Sofia, Bulgaria • NBI Copenhagen
r-Process and Supernovae RISING: Nuclear structure interest Isospin competition/symmetry |Tz|=T =1: Iπ=0+ Sp=0 T=0 : Iπ=1+or (2j)+ rp-Process Novae and X-ray bursts N=Z Sn=0 Shell evolution/quenching Proton number Neutron number
- high energy beams >100MeV/u - unambigous beam identification event by event - cocktail or pure radioactive beam - scattering experiments β~0.5: coulomb excitation, knockout reaction Ge array forward angles, εγ~5% - stopped beam experiments: isomers, beta and particle decay Ge array spherical close geometry εγ~15% EXPERIMENTAL Features:
Ge Cluster Ge Miniball RISING g-array for fast beams First scattering experiments 2003-2005: Coulomb excitation, One-, two-neutron knock-out Typically: 100MeV/u, εg=0.06, ∆Eg/Eg=0.02 Target chamber CATE beam
asymmetry: p-h excitation? N=64 subshell closure? M. Hjorth-Jensen, ν(d5/2g7/2s1/2h11/2), eν = 1e Relativistic Coulomb excitation of nuclei towards 100Sn • 112,108Sn secondary beam with ~150MeV/u • Au – Coulex target 2003 A. Banu, PhD thesis, PR C72, 061305(R) (2005) 108Sn B(E2:2+→0+) EXP: 15.1 (3.3) W.u. TH1: 11.2 W.u. Morten Hjorth-Jensen TH2: 11.5 W.u. Frederic Nowacki 2004: J. Cederkäll et al., REX-ISOLDE, 110Sn 2005: MSU, K.Starosta et al. 106-112Sn
Sn chain: Enhanced B(E2) systematics towards 100Sn GSI RISING P. Doornenbalet al., PRC(R) in print A. Banu et al, PRC 72 061305(R) 2005 J. Cederkäll et al., PRL98, 172501(2007) A. Ekström et al., PRL 101, 012502(2008) C. Vaman et al., PRL 99, 162501(2007), Shell Model: F. Nowacki et al., ν(d5/2g7/2s1/2h11/2), eν = 0.5e, π(g9/2g7/2d5/2d3/2s1/2), eπ = 1.5e πν monopoles tuned to πESPEs and Z=50 shell gap
prompt g flash • isomeric ratio • gray sequence • spin-parity assignment • - • A,Z event-by-event ID • Time correlation ns - min • Rate < 1 ion/hour • Alignment → g, Q moment • + + -
Isomer scans RISING: Stopped beamsConvenor: P. H. Regan, University of Surrey N=Z P. H. Regan D. Rudolph b Decay measurement B. Rubio, J. Fujita, W. Gelletly A. Gadea, A.Algora A. Blazhev, B. Wadsworth, P. Boutachkov, Zh. Liu 208Pb T. Faestermann 204Pt, 205Au N>Z Zs. Podolyak 100Sn P.H. Regan, J. Benliure, Zs. Podolyak 86Tc, 82Nb 132Sn 62Ga 130Cd, 131In 56Ni 54Ni, 50Fe A. Jungclaus, M. Pfutzner, M.Gorska 108Zr A. Bruce
Techniques – Z vs A/Q plotPreliminary!! B. Wadsworth et al., Z 96Cd rp-proc waiting point A/Q → Prelim estimate > 2000 96Cd ions
Expected Known Paestum 2003
Core excited states in large scale shell model F. Nowacki, priv. comm.. V.I.Isakov, K.I. Erokhina Phys.At.Nucl. No.8,1431(2002). 9848Cd50 10050Sn50 A. Blazhev et al., PRC 69, 064304 (2004)
rp process path • ● @ T < 109 Kelvin when photodisintegration lifts (p,g) – (g,p) equilibrium • ● MED of several 100 keV will influence the proton capture appreciably • End of rp path near 100Sn due to fast a decay beyond the double shell closure @Z=N=50 • 100Sn shell structure decisive for ß+/EC decay (Gamow-Teller) and waiting points rp process path From: H. Grawe, K. Langanke, G. Martínez-Pinedo, Rep.Progr.Phys. 70,1525 (2007)
100,102Sn ß+/EC decay Ip = 6+ isomerism Decay scheme (shell model) 10050Sn50 1969+D 1969 1472 Decay scheme M. Karny et al. EPJA 27, 129 (2006) GT 10250Sn52 M1 GT E2 M1 conversion 10049In51 10249In53
100Sn Particle identification spectrum T.Faestermann et al.
Te Sb Sn In Cd Ag Pd Rh Ru Gamow-Teller decay in 100Sn T.Faestermann TU München analysis: K.Eppinger, C.Hinke, 100Sn setting
8+ 2428 6+ 2281 2083 4+ 1395 2+ 0+ 0 100Sn setting check : 98Cd 12+ 6635 198 new!?! 688 147 s.e. 4207 1395 d.e.
Astrophysics relevance for n-rich nuclei 204Pt 130Cd 98Cd b:Dillman et al., PRL, 91, 162503 (2003) 2+:Kautzsch, T. et al. Eur. Phys. J. A9, 201-206 (2000) Langanke, K. & Martínez-Pinedo, G. Rev. Mod. Phys.75, 819-862 (2003)
Indirect evidence for a N=82 shell quenching indication from ß-decay studies at ISOLDE Can the anomalous behaviour of 2+ energies in the Cd isotopes towards N=82 be attributed to a change in the N=82 shell gap ? Kautzsch et al., Eur. Phys. J. A9 (2000) 201
130Cd from fission and fragmentation A. Jungclaus et al., PRL 99, 132501 (2007) Lucia Caceres PhD theses gg-coincidences 130Cd
100Sn vs 132Sn H. Grawe N=50 TBME scaled by (88/132)1/3 to N=82 SPE from99In and 131In, respectively Ir=13% Ir=27% B(E2) = 1.3(4) 1.45(2.0)1.2 1.1/1.3(2) WU p(p1/2,g9/2) n (s,d,g7/2,h11/2) No dramatic shell quenching! A. Jungclaus et al., PRL 99, 132501 (2007) A. Blazhev et al., PRC 69, 064304 (2004)
131In spectra 131In spectra M.G., L. Caceres et al., submitted to PLB Z=49
More precisely... Shell model : p 2p1/2,1g9/2,1g7/2,2d5/2 n 3s1/2,1h11/2,2d3/2,2f7/2, (1h9/2) 1p1h excitations only ! 132Sn single particle / hole energies Two-body interaction from one major shell higher at 208Pb PRC 44, 233 (1991) scaled by A-1/3 and for orbital overlap N=82 gap at Cd:4.33 MeV vs. 4.94 MeV at Sn E4: ≤1.62.4 WU
The solar r-process abundance problem The abundance deficiency (´´trough´´) is due to the changing slope in the neutron separation energy S2n (´´saddle point structure´´) in some mass formulae. ´´trough´´ From: H. Grawe, K. Langanke, G. Martínez-Pinedo, Rep. Progr. Phys. 70,1525 (2007) ´´saddle point´´ Depletion of progenitors !
stable nucleus neutron rich nucleus Shell quenching for very n-rich nuclei Potential shape: Wood Saxon (WS) → Harmonic Oscillator (HO) T.R. Werner, J. Dobaczewski, W. Nazarewicz, Z. Phys. A358 (1997) 169 need for intense radioactive nuclear beams
NEUTRON DETECTOR GE γ-ARRAY RADIOACTIVE BEAM Conclusion: ● Fragmentation + fission of relativistic beams + FRS + RISING ● Precision spectroscopy of exotic nuclei → tuning of effectiveNN interaction ● Monopoles determine shell evolution ● Nuclear structure and astrophysics Future : ● FAIR + Super-FRS + HISPEC/DESPEC → intensity, acceptance, g efficiency, selectivity ● Modern effective NN interactions, SM techniques HISPECDESPEC(fast, slow beams) (stopped beams)
A.Algora(Valencia), W.Gelletly(Surrey), A.Gadea (Legnaro), Y.Fujita(Osaka), B. Rubio(Valencia), K.Langanke, G. Martinez-Pinedo, K. Sieja(GSI), F. Nowacki (Strasbourg), P.Regan(Surrey), G. Neyens(KU Leuven), H. Grawe (GSI), J. Tostevin (Surrey), P. Boutachkov(GSI), A. Blazhev (Köln), T. Faesterman(Munich), B. Wadsworth(York), Zh. Liu(Edinburg), L.Caceres (GSI/Madrid), K. Eppinger,C. Hinke (TU Munich), F.G. Molina(Valencia), A. Garnsworthy(Surrey/T), A. Banu(GSI), A. Jungclaus (Madrid), M. Pfützner (Warsaw), Zs. Podolyak(Surrey), S. Pietri(Surrey/GSI), P. Doornenbal(GSI/RIKEN), N.Brown(Köln), T. Brock (York), S. Steer(Surrey), G. Farrelly(Surrey) RISING/GSI group: H.J. Wollersheim, J.Gerl, P. Bednarczyk, P. Boutachkov, C. Domingo, J. Grebosz, I. Kojoharov, H. Schaffner, R. Hoischen(GSI/LUND)... FRS group: H. Weick, H. Geissel, Y. Litvinov, Ch. Nociforo.. ...and many others within the RISING collaboration Collaboration