160 likes | 328 Views
IPN Orsay CEA, DAM, DIF Observatoire de Paris, Meudon. Università degli Studi di Milano Dipartimento di Fisica Université Libre de Bruxelles IAA. e nergie a tomique . e nergies a lternatives.
E N D
IPN Orsay CEA, DAM, DIF Observatoire de Paris, Meudon Università degli Studi di Milano Dipartimento di Fisica Université Libre de Bruxelles IAA energie atomique . energies alternatives Impact of electro-weak processes in Type II Supernovae collapse Patrick BLOTTIAU &Anthea F. FANTINA (CEA/DAM/DIF) (IAA – ULB Brussels) Dr. E. Khan, Dr. J. Margueron (IPN Orsay) Dr. Ph. Mellor (CEA, DAM, DIF) Dr. J. Novak, Dr. Micaela Oertel (Luth, Meudon) Prof. P. Pizzochero & Dr. P. Donati (Univ. Milano & INFN) MODE, Bordeaux, November 15-17, 2010
Neutrino transport Symmetry energy(T) Nucleon effective mass Hydrodynamics Outline MICROPHYSICS MACROPHYSICS Weak-processes SN Simulations Equation of State One-zone General Relativity Newtonian MODE 2010
Part I:intro & 1D Newtonian code (with n transport) MODE 2010
Condition in the core during collapse : Motivations: nuclear physics in SN Esym (T) 15 solar mass progenitor MODE 2010
T-dependence of Esym Theoretical studies on influence of T-dependence of nuclear symmetry energy on collapse trajectory: • Donati P. et al, Phys. Rev. Lett. 72, 2835 (1994) Esym(T) obtained in analogy with Fermi gas model via m*(T): PVC dynamical effects beyond mean field (E-dependence of MF) • Dean D.J. et al, Phys. Rev. C66, 31801 (2002) MODE 2010
EoS in SN simulations (see M. Oertel’s talk) • Lattimer and Swesty, Nucl. Phys. A 535, 331 (1991) - based on a liquid drop model - • Shen et al., Nucl. Phys. A 637, 435 (1998) - based on RMF - and : ? (or Esym(T) as in Donati et al.?) but : not easy to implement Esym(T) in these EoS • Bethe H.A. et al., Nucl. Phys. A 324, 487 (1979) (BBAL) • based on a liquid drop model • analytical EoS • m*(T) has been implemented according to calculations by Donati et al. Outlooks: include this “thermal” effect in modern EoS MODE 2010
on free protons on nuclei m*(T)Esym Yl,tr Shock wave energy Effect of Esym(T) on CCSN larger values of Yleptat trapping less deleptonization less energy dissipated In one-zone model m*(T) leads to systematic reduction of deleptonization in the core: dTYlept ≈ 0.006 ⇒ dT Ediss ≈0.4 foe ( A.F.Fantina, P. Donati and P. M. Pizzochero, Phys. Lett. B676, 140 (2009) ) MODE 2010
Results of collapse simulation at bounce: impact of Esym(T), BBAL EoS (1D Newtonian) Systematic effect! ( A.F.Fantina, P. Blottiau, J. Margueron, Ph. Mellor, and P. Pizzochero, in preparation) MODE 2010
Conclusions & Outlook (I) • Influence of T-dependence of Esym on the evolution of collapse • → systematic reduction of neutronization of the core • (increasing of final lepton fraction) & less energy dissipated by shock wave • - one zone model - • → position of shock wave formation: bigger homologous core • - 1D Newtonian code - • even if no dramatic effect on dynamics of the collapse is expected • (see fluid instabilities, SASI, magnetic field, …) • effects are not negligible! MODE 2010
Part II:1D GR (+ Newtonian vers.) code (no n transport) MODE 2010
Results of collapse simulation at bounce: “std” trapping (1D GR), LS EoS K=180MeV Bruenn 1985 rates MODE 2010
GR vs Newtonian simulation at bounce MODE 2010
Conclusions (II) • GR code : improvements • → introduction of a trapping scheme • → implementation of the Newtonian version • → results in global agreement with the literature • Influence of neutrinos in GR framework : • → multi-group + trapping scheme allows for a first spectral information • but : - trapping on density (same treatment for different neutrino energy) • - processes other than capture (e.g. scattering) missing! MODE 2010
Microphysics Macrophysics nuclear physics dynamics of collapse General Conclusions & Outlooks • Nuclear inputs(microscopic calculation): • EoS: extension of LS; different tables (J. Margueron, M. Oertel, S. Goriely, N. Chamel) • deleptonization processes electron capture rates (E. Khan) • symmetry energy nucleon effective mass and their T-dependence (RPA) (P. Donati, J. Margueron, P. Pizzochero) • neutrino physics (P. Blottiau, J. Margueron, Ph. Mellor) • Hydrodynamics: • One-zone (P. Donati, P. Pizzochero) • 1D Newtonian (P. Blottiau, Ph. Mellor) • 1D General Relativistic: ntransport (J. Novak, J. Pons, P. Blottiau, Ph. Mellor) MODE 2010