1.82k likes | 5.17k Views
Chapter 4 Introduction to Nanochemistry. Chapter 4. Introduction to Nanochemistry. Periodicity of the Elements Chemical Bonding Intermolecular Forces Nanoscale Structures Practical Applications . Introduction to N anochemistry. 1. 4. Section 1: Periodicity of the Elements.
E N D
Chapter 4 • Introduction to Nanochemistry
Chapter 4 Introduction to Nanochemistry • Periodicity of the Elements • Chemical Bonding • Intermolecular Forces • Nanoscale Structures • Practical Applications
Introduction to Nanochemistry • 1 • 4 Section 1: Periodicity of the Elements • The Elements • Periodic Table of the Elements • Periodic Trends
Periodicity of the Elements • 1 • 4 The Elements • Helium Atom • 2 Neutrons and 2 protons in the nucleus • 2 Electrons moving about the nucleus • An Element Is an Atom with a Unique Chemical Identity • The Presence of 2 Protons in the Nucleus Is Unique to the Helium Atom • # Neutrons changes — helium isotopes • # Electrons changes — helium ions • # Protons changes — not helium!
Periodicity of the Elements • 1 • 4 The Elements • Atomic Properties • Atomic Structure • Quantum Numbers and Electron Configurations
Periodicity of the Elements • 1 • 4 Atomic Properties • Element Symbol — 1 or 2 Letters • Atomic Number — Number of Protons in Element (Z) • Mass Number — Number of Protons and Neutrons (A) • Isotopes — Elements with Varying Numbers of Neutrons
Periodicity of the Elements • 1 • 4 Atomic Structure
Periodicity of the Elements • 1 • 4 Quantum Numbers and Electron Configurations
Periodicity of the Elements • 1 • 4 Periodic Table of the Elements
Periodicity of the Elements • 1 • 4 Periodic Table of the Elements Metals Metalloids Nonmetals
Periodicity of the Elements • 1 • 4 Periodic Table of the Elements
Periodicity of the Elements • 1 • 4 Typical Chemical Reactions • 1. Metal + Nonmetal → Salt • 2 Al(s) + 3 Br2(g)→ 2 AlBr3(s) • 2a. Metal Oxide + Water → Metal Hydroxide • Na2O(s)+ H2O(l)→ 2 NaOH(aq) • 2b. Nonmetal Oxide + Water → Acid • CO2(g)+ H2O(l)→ H2CO3(aq) • 3. Metal Oxide + Acid → Salt + Water • NiO(s) + H2SO4(l)→ NiSO4(aq) + H2O(l)
Periodicity of the Elements • 1 • 4 Periodic Trends • Atomic Number • Atomic Size • Ionization Energy • Electron Affinity • Electronegativity
Periodicity of the Elements • 1 • 4 Periodic Trends: Atomic Number (Number of Protons in Nucleus) Increasing atomic number Increasing atomic number
Periodicity of the Elements • 1 • 4 Periodic Trends: Atomic Size Increasing atomic size Increasing atomic size
Periodicity of the Elements • 1 • 4 Periodic Trends: Electron Affinity (atom + e—→ atom—+ energy) Increasing electron affinity Increasing electron affinity
Periodicity of the Elements • 1 • 4 Periodic Trends: Ionization Energy (atom + energy → atom+ + e— ) Increasing ionization energy Increasing ionization energy
Periodicity of the Elements • 1 • 4 Periodic Trends: Electronegativity Increasing electronegativity Increasing electronegativity
Introduction to Nanochemistry • 2 • 4 Section 2: Chemical Bonding • Ionic Bonds • Covalent Bonds
Introduction to Nanochemistry • 2 • 4 Chemical Bonding • Ionic Bonds • Covalent Bonds
Chemical Bonding • 2 • 4 Electronegativity Values • Electronegativity Difference Between Atoms • ≳ 1.7 Ionic • ≲ 1.7 Covalent
Chemical Bonding • 2 • 4 Ionic Bonds • Na + ½ Cl2 → [ Na+ + Cl– ] → NaCl • Ca + Cl2 → [ Ca+2+ Cl– + Cl– ] → CaCl2
Chemical Bonding • 2 • 4 Covalent Bonds
Chemical Bonding • 2 • 4 Molecules with Functional Groups
Chemical Bonding • 2 • 4 Polar Covalent Bonds • Electronegativity • 3.5 Oxygen • 2.1 Hydrogen
Introduction to Nanochemistry • 3 • 4 Section 3: Intermolecular Forces • Dipole-Dipole Interactions • Hydrogen Bonding
Intermolecular Forces • 3 • 4 Charge Carrier • Ions • Dipole • Induced Dipole
Intermolecular Forces • 3 • 4 Dipole Interactions
Intermolecular Forces • 3 • 4 Hydrogen Bonding Liquid Water Ice
Intermolecular Forces • 3 • 4 Hydrogen Bonding: Watson-Crick Base Pairs
Introduction to Nanochemistry • 4 • 4 Section 4: Nanoscale Structures • Polymers and Copolymers • Dendrimers • Self-Assembled Monolayers • Nanoparticles • Quantum Dots • Carbon Nanotubes • Fullerenes
Nanoscale Structures • 4 • 4 Polymers and Copolymers
Nanoscale Structures • 4 • 4 Dendrimers
Nanoscale Structures • 4 • 4 Self-Assembled Monolayers
Nanoscale Structures • 4 • 4 Self-Assembled Monolayers
Nanoscale Structures • 4 • 4 Self-Assembled Monolayers • Functional Groups • Layer-by-layer (LbL)/electrostatic self-assembly (ESA) • Substrates • Gold • Biocompatible • Inert • Other metals • Silicon oxides • Optical transparency
Nanoscale Structures • 4 • 4 Nanoparticles • Gold Nanoparticles • Quantum Dots
Nanoscale Structures • 4 • 4 Gold Nanoparticles • 1 to >100 nm • Uniform Size Distribution • Red Color, Not Gold • Easily Modified Surface Properties • Gold Is Inert in Biological Organisms
Nanoscale Structures • 4 • 4 Quantum Dots
Nanoscale Structures • 4 • 4 Quantum Dots
Nanoscale Structures • 4 • 4 Carbon Allotropes • sp3 Carbon: Diamond • sp2 Carbon: Graphite, Graphene, Fullerenes, Carbon Nanotubes C60 Fullerene Carbon Nanotube
Nanoscale Structures • 4 • 4 Carbon Nanotubes Multi Walled Nano Tube
Nanoscale Structures • 4 • 4 Carbon Nanotubes • Exploring Structures • Fibers • Typical lengths: 1-100 μm • Containers • Adding end caps • Enclosing atoms, molecules, C60 fullerenes • Enclosing carbon nanotubes (i.e., multi-walled nanotubes) • Surface modification • Via van der Waals interactions • Via chemical reactions
Nanoscale Structures • 4 • 4 C60 Fullerenes C60
Introduction to Nanochemistry • 5 • 4 Section 5: Practical Applications • Drug Delivery • Biological Sensors • Solar Cells • Nanocatalysts
Practical Applications • 5 • 4 Drug Delivery β-cyclodextran camptothecin
Practical Applications • 5 • 4 Drug Delivery 60 nm Nanoparticle (m ≈ 17, MW 97 kDa)
Practical Applications • 5 • 4 Biological Sensors • Selectivity in Biological Matrix • Differentiate among similar biomolecules • Sensitivity to Biological Concentrations • Sensitive detectors • Chemical/biological amplification • Efficient • Cost effective • Throughput/turnaround time
Practical Applications • 5 • 4 Biological Sensors
Practical Applications • 5 • 4 Solar Cells • Current and Potential Applications • Improve efficency • >1 Electron per photon • Moving electrons between electrodes • Alternatives to silica • Polymer matrix • Cost reduction • Alternative photon absorbers