1 / 14

Assalamu’alaikum wr. wb

Assalamu’alaikum wr. wb. LOGARITMA. Pengertian Logaritma. Logaritma sebagai invers dari eksponen. Contoh : 2³ = n, maka n = 8, ini permasalahan pangkat 2ˣ = 8, maka nilai x = 3, ini permasalahan logaritma dapat ditulis ²log 8 = x ⇔ ²log 8 = 3 3² = b, maka b = 9, ini permasalah eksponen

blade
Download Presentation

Assalamu’alaikum wr. wb

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Assalamu’alaikum wr. wb

  2. LOGARITMA

  3. Pengertian Logaritma Logaritma sebagai invers dari eksponen. Contoh : • 2³ = n, maka n = 8, ini permasalahan pangkat 2ˣ = 8, maka nilai x = 3, ini permasalahan logaritma dapat ditulis ²log 8 = x ⇔ ²log 8 = 3 • 3² = b, maka b = 9, ini permasalah eksponen 3ˣ = 9, maka x = 2, ini permasalahan logaritma dapat ditulis ³log 9 = x ⇔³log 9 = 2

  4. Logaritma Biasa Logaritma Secara umum ditulis, • a disebut bilangan pokok logaritma atau basis • b dsebut yang dilogaritmakan • c disebut hasil logaritma • a > 0, a = 1, b > 0 • bilangan pokok 10 boleh tidak ditulis

  5. Sifat-sifat Logaritma • ᵖlog (axb) = ᵖlog a + ᵖlog b

  6. g. h. • ᴾlog 1 = 0 • ᴾlog p = 1

  7. ᴾlog a . ᵃlog b = ᴾlog b dengan a > 0, b > 0, p ≠ 1 dan p > 0 ᵖlog 1 = 0ᵖlog p = 1 persamaan logaritma ⇔ ᵃlog b = c b = aᶜ

  8. Contoh • ²log 32 = ²log 2⁵ = 5 x ²log 2 = 5 • ⁵log = ⁵log 10 - ⁵log 2 • ²log 8 = ²log 2³ = 3 . ²log 2 = 3 . 1 = 3 • ²log 3 = • = ⁸log 2 • .

  9. ³ log 1 = 0 • ² log 2 = 1 contoh persamaan logaritma ³log (2x – 1) + ³log x = 0 ³log ((2x – 1)(x) = ³ log 1 ³log (2x² - x ) = ³log 1 (2x² - x) = 1 (2x² - x - 1) = 0 (2x + 1 )(x – 1) = 0 2x = -1 x = atau x = 1

  10. Contoh Soal Selesaikan soal berikut: • ³log 81 + ³log 243 - ³log 27 • ³log 27 - ³ log 81 • ⁵log 125 carilah himpunan persamaan logaritma ⁹log (2x – 1) =

  11. Penyelesaian • ³log 81 + ³log 243 - ³log 27 = ³log ( ) = ³log 729 = ³log 3⁶ = 6 . 1 = 1

  12. ³log 27 - ³ log 81 = ³log ( ) = ³log ( ) = ³log = -1³log 3 = -1 • ⁵log 125 = ⁵log 5³ = 3⁵log 5 = 3 . 1 = 3

  13. ⁹log (2x – 1) = ⇔⁹log (2x – 1) = ⁹log ⇔(2x – 1) = ⇔ 2x – 1 = ⇔ 2x – 1 = 3 ⇔ x = 2

  14. Wassalamu’alaikum wr. Wb

More Related