250 likes | 264 Views
This lecture covers topics such as silicon oxidation, diffusion, and implantation. It discusses the kinetics of silicon oxidation, heat transfer, and the different controls that can affect the reaction rate. The lecture also covers the thickness of oxide layers, slow solid-state diffusion, and diffusion of dopants. Additionally, it explores implantation techniques, including stopping power and implantation depth, as well as diffusion of implanted dopants through heat treatment or laser annealing.
E N D
Lecture 9.0 Silicon Oxidation/Diffusion/Implantation
Silicon Oxidation • Reactor • Furnace at T=850C • Pure Oxygen • Si + O2 SiO2 • Kinetics • BL-Mass Transfer • J=Kg(CA-0) • SS-Diffusion • J=DO-SiO2 (dC/dx) • Heat Transfer • BL, q=h(T1-T) • Solid, q=kSiO2(dT/dx) • J=q/Hrxn Grxn<0, Spontaneous
Kinetics • Thickness • Linear Rate • Reaction Control • First Order • BL-MT Control • BL-HT Control • Parabolic Rate • Product diffusion Control • Product heat transfer Control • J =(dx/dt) SiO2/MW SiO2
Thickness Experiments • Parabolic Rate • Derive it! • dx2/dt=2K • K=Ko exp(-Ea/RgT) • x=o @ t=0 • x= at t= • Very common!! • Slow Solid State Diffusion • Slow Heat Conduction
Field Oxide • Thick oxide • Oxygen • Steam • High Temperature Reaction
Diffusion • Deposition of B or P on surface • Heat and Hold for period of time • Solid State Diffusion • dC/dt=D d2C/dx2 • C=Co at x=0 • C=0 at x= • C=Co(1-erf[x/(4Dt)]) • Etch excess B or P from surface
Diffusion Coefficient • Self Diffusion • D*=Doexp(-Ea/RgT) • Diffusion of A in B • Depends on A and matrix B • DAB =(D*A XB + D*B XA) (d ln [aA]/d ln [XA]) • d ln [aA]/d ln [XA] = 1+ (d ln [A]/d ln [XA]) • d ln [aA]/d ln [XA] ~ 1 for ideal solutions • And • DAB =(D*A XB + D*B XA) = (D*A (1-XA) + D*B XA) • Note Concentration dependence!! • DAB ~D*A when XA ~0 , the dilute solution limit • Good for dopants
Implantation • Energy Loss • Stopping of Ion • Nuclear cross section, Sn(E) • Electronic cross section, Se(E) • ρT = atomic density of target (#/cc)
Average Range • Integration of Energy Loss equation
Implantation • Create Ions in Vacuum • Accelerate in Electric Field
Implantation • Impinge onto Silicon Surface • Knock out Si ion(s) • Charge Balance • Travel deep into Silicon
Implantation • Effect of Ion Mass Mi>MSi Mi<MSi
Implant Depth Depth Increases with Energy
Implantation Straggle Increases with Energy
Implantation Concentration Profile • Probability Based • N(x)=Nmax exp[(x-xave)2/2x2] • Nmax=(Ndose/[(2) x])~(0.4 Ndose/ x) • Ndose=Qdose/e • Qdose= current applied/cm2 • σx = standard deviation of projected range
Implantation Through Slit • Slit opening = a • N(x) =projected range formula • ΔR = transverse straggle
Mask Thickness • To effectively prevent ions penetrating in thick zone • Relatively thick Oxide Protection layer • Patterned • Thinning (etching) of Oxide Protection layer over implantation zone • Remove oxide layer with impurities inside
Mask Thickness • Transmission through mask • T=1/2 erfc[(x-xave)/2 x] • To stop 99.99% of implanted materials, T=10-4 • Solve for x, the thickness to stop 99.99% of ions.
Implant Depth Depth Increases with Energy
Diffusion of Implanted Dopants • Diffusion Furnace or Laser • Heat Treatment • Solid State Diffusion • dC/dt = CT d/dz(DAB dXA /dz) • C=Co(z) = CT XA(z) at z=0 • C=0 at z= • DAB =(D*A XB + D*B XA) (d ln [aA]/d ln [XA]) • Interdiffusion or mutual diffusion coefficient