1 / 49

Präsentiert: Entsalzung im geschlossenen Kreislauf (CCD)

Präsentiert: Entsalzung im geschlossenen Kreislauf (CCD). Innovative RO Technologie für grossen Durchfluß, hohe Rückgewinnung and Niedrig- Energie ohne Energie Rückführungseinheiten.

bozica
Download Presentation

Präsentiert: Entsalzung im geschlossenen Kreislauf (CCD)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Präsentiert: Entsalzung im geschlossenen Kreislauf (CCD) Innovative RO Technologie für grossen Durchfluß, hohe Rückgewinnung and Niedrig- Energie ohne Energie Rückführungseinheiten

  2. Entsalzung im geschlossenen Kreislauf / Closed Circuit Desalination (CCD) ist eine weiterentwickelte hydrostatische kontinuierliche RO Technologie. • CCD ermöglicht einen Betrieb bei extremen Durchflußraten (über 30 l/m2/h, ohne die Membranwirkungsgrenzen zu überschreiten), extreme Rückgewinnung (65% für SWRO und ultimativ für BWRO) sehr niedrigen Energieverbrauch (SWRO bei ~1.7 kWh/m3 und niedriger), ohne Energie - Rückführungseinheiten. • CCD benötigt nur Standard Komponenten , einschließlich Membranen jedweder Type und Fabrikat. • CCD ist anwendbar für jede RO Anwendung beliebiger Größe. • CCD ist Feld erprobt – BWRO Anlagen seit 2009 (Anlagen bis 1500 m3/d), und SWRO seit 2010. • CCD Technologie ist entwickelt von Prof. Avi Efraty, und beinhaltet mehrere weltweit zugelassenen Patente.

  3. Agenda • Technologie Übersicht • Prinzip CCD – Theorie und Praxis • SWRO CCD • BWRO CCD • SWRO Leistung • Testeinheit Konfiguration • Vergleichsanalyse • SWRO Einheit Konfiguration – Scale Up

  4. CCD Einheiten

  5. Principal batch CCD

  6. Technologie – konventioneller RO • Schematische Zeichnung von existierenden Seewasserentsalzunsanlagen. Permeate 43.6% Zufluß Komprimierte Lauge 4.4% 3.6% 3.0% 10% 2.4% 8.1% 6.7% 5.4% Rückgewinnung pro Element 100% 56.4% Energie Rückgewinnung Nachteile konventioneller Technologie : • Konstant hoher Druck für fortlaufende Membran Auslastung. • Beschränkte Rückgewinnung • Energie Rückführungseinheiten (ERD) müssen vorgesehen werden um doppelten Energieverbrauch auszuschließen. ERDs sind tuer in Bezug auf CAPEX, Wartung, und ERD verursacht Energie Verlust. • Die Beaufschlagung der letzten Membranen ist schlecht, und deshalb , ist der Gesamtwirkungsgrad gering. • Auslegung verschiedener Elemente für Verschutzungsgrad und Größe für Einlauf / Auslauf Membranen. Dekomprimierte Lauge

  7. Theoretischer hydrostatischer Batch Ansatz HP Pumpe Zufluß Speise wasser Permeate wasser 1m3 Membran wände • Das System ist mit frischem Speisewasser gefüllt und bei Athmosphärendruck verschlossen. • Entsalzung initiert durch Rührer und Pumpe. 2m3 • Konstanter Durchfluß bei variablem Druck. 1m3 • Entsalzung stopt bei vorgebenem Rückgewinnungsgrad. (überwacht durch EC/ Druck / Volumen )durch Ausschalten von HP & Rührer. Permeate Tank

  8. Hydrostatisch theoretischer Ansatz • Behälter dekomprimiert auf Atmosphärendruck (AP) • Vernachlässigbarer Verlust an hydraulischer Energie (0.0025 kWh) 1m3 • Lauge bei AP wird ohne zusätzlichen Energieaufwand abgelassen. 2m3 Brine Sammel -Tank Permeate Sammel - Tank

  9. Hydrostatisch theoretischer Ansatz • Behälter dekomprimiert auf Atmosphärendruck (AP) • Vernachlässigbarer Verlust an hydraulischer Energie (0.0025 kWh) • Lauge bei AP wird ohne zusätzlichen Energieaufwand abgelassen. 2m3 1m3 Brine Sammel -Tank Permeate Sammel -Tank

  10. Hydrostatisch theoretischer Ansatz • Behälter gefüllt mit frischem Speisewasser bei Atmosphärendruck. • System fertig für nächsten Zyklus. 1m3 2m3 1m3 Brine Sammel - Tank Permeate Sammel -Tank

  11. Energiebedarf Konventionelle Entsalzung bei vorgegebenen Druck (konstant – 69 bar) Variabler Druck – 10 bar Anfahrdruck (Durchschnitt – 41 bar) Osmotischer Druck – theoretisch niedriger Limit (31 bar).

  12. 1m3 Hydrostatic vs. hydrodynamic approach Permeate 43.6% Compressed Brine 4.4% 3.6% 3.0% 10% 2.4% 8.1% 6.7% 5.4% Recovery per element Advantages of the hydrostatic approach: • Pressurized feed volume equal to permeate volume. Hence: • Practically zero loss of energy to brine. • No need for Energy Recovery Devices – Reduction in CAPEX and OPEX. • Variable pressure greatly reduce energy loss to permeate side. 56.4% Energy Recovery Decompressed Brine • Hence, this system requires far less energy even compared to theoretical • ERDs with 100% efficiency. • The process is not limited in its recovery.

  13. Hydrostatic desalination utilizing standard membranes Feed Permeate 1m3 Permeate Feed 10% 8.1% 6.7% Circulation pump Conductivity meter • Instead of s simple tank, our closed hydrostatic tank contains standard membranes for which it simulates the specific flow conditions that are recommended for those membranes. • Instead of a mixer, circulation pump is circulating the concentrate.

  14. Hydrostatic desalination utilizing standard membranes Permeate Feed 10% 8.1% 6.7% Circulation pump Conductivity meter QHP=QPER QMOD-outlet=QCP QMOD-inlet=QHP+QCP Module Recovery (MR)=QHP/(QHP+QCP)*100 Net Driving Pressure = Constant Maintained by HP Cross Flow = Constant (& High)  Maintained by CP Recovery not limited  Function of time and internal circulations Independent manipulation of each of those variable guarentees unmatched operational flexibility.

  15. Membranes performance 25% 75% 4.4% 3.6% 3.0% 10% 1.9% 2.4% 8.1% 6.7% 5.4% No excessive flux induced fouling Boosting pressure Boosting pressure No insufficient flux induced fouling 10% 8.1% 6.7% 10% 8.1% 6.7% 10% 8.1% 6.7% Lower salinity Optimal flow rate Optimal pressure High salinity Low flow rate Lower pressure

  16. Membranes performance • The above design greatly improves membranes performance: • Much higher average membrane productivity (better utilization of membrane surfaces) for reduced number of membranes or reduced pressure. • Reduced energy thanks to gradual inter-stage buildup of pressure. • Reduction of fouling – head membranes are not exposed to excessive flow and pressure; tail membranes are not subject to insufficient flux rates. • However, this design is limited in its recovery and requires Energy Recovery • Devices just like the conventional designs, and it also requires more CAPEX.

  17. CCD & Membranes performance Permeate Feed CCD Dilution Effect Circulation pump Conductivity meter CCD (in the bottom) is utilizing membranes as effectively as the upper design. In the first cycle CCD membranes operates like the first 3 membranes of the upper design, in the second cycle like the second 3 membranes and so on. However, during all the cycles constant driving pressure is maintained so there are not variations in membranes tension.

  18. CCD & Membranes performance Permeate Feed Dilution Effect Circulation pump Conductivity meter • The CCD has great advantages in terms of membranes performance: • Much higher and extremely balanced flux rates without exceeding head elements’ test conditions and without insufficient tail elements’ flux rates. • Reduction of scaling – after the last cycle in each sequence the membranes are washed by fresh feed (instead of facing constant peak concentration like in the conventional systems). • Bio-fouling reduction through the frequent concentration variation and the high flow rates. • Extreme operational flexibility thank to the ability to individually manipulate any of the process and membranes variables irrespective of the others. • In addition, there are the other CCD advantages such as ultimate recovery, • no need for Energy Recovery and variable pressure that are reducing energy.

  19. Hydrostatic approach Permeate HP(vfd) CP(vfd) Feed The hydrostatic desalination approach has extraordinary advantages over the conventional technology that are manifested in dramatic reductions in energy, CAPEX (fewer membranes, no energy recovery devices), and OPEX (thanks to the reduced membranes erosion). However, it has a major problem: this approach makes a batch process and thus, it not suitable for commercial applications. Desalitech technology makes it continuous.

  20. SWRO CCD US 7,695,614 & related patents granted worldwide

  21. SWRO CCD Closed Circuit Desalination (CCD) while in the disengaged side conduit fresh feed is filled at near Atmospheric Pressure (AP). Closed Circuit Permeate HP(vfd) CP(vfd) Feed Pressurized AP BRP Side Conduit HP = High Pressure Pump, CP = Circulation Pump, BRP = Brine replacement Pump, O = 2 way valve, = Non return valve

  22. SWRO CCD Closed Circuit Desalination (CCD) while the sealed disengaged side conduit contains fresh feed under Atmospheric Pressure (AP). Closed Circuit Permeate HP(vfd) CP(vfd) Feed Pressurized AP BRP Side Conduit HP = High Pressure Pump, CP = Circulation Pump, BRP = Brine replacement Pump, O = 2 way valve, = Non return valve

  23. SWRO CCD Closed Circuit Desalination (CCD) continues while disengaged side conduit which contains fresh feed is hydrostatically compressed and stands by. Closed Circuit Permeate HP(vfd) CP(vfd) Feed Pressurized Pressurized BRP Side Conduit Pressurizing is done hydrostatically and mildly, without flow and cavitations and without timing considerations. HP = High Pressure Pump, CP = Circulation Pump, BRP = Brine replacement Pump, O = 2 way valve, = Non return valve

  24. SWRO CCD Closed Circuit Desalination (CCD) continues, with the side conduit engaged to the closed circuit for a single cycle, for the release of fresh feed & collection of brine. Closed Circuit Permeate HP(vfd) CP(vfd) Feed BRP Side Conduit • Side conduit engaged at high recovery set point, monitored by pressure, conductivity or volumetrically. • Valves operate at isobaric conditions, mildly, without delicate timing considerations. HP = High Pressure Pump, CP = Circulation Pump, BRP = Brine replacement Pump, O = 2 way valve, = Non return valve

  25. SWRO CCD Replacement complete. Closed Circuit Desalination (CCD) continues with fresh feed that have replaced the highly concentrated closed circuit volume. The side conduit is disengaged and sealed, containing the systems brine. Closed Circuit Permeate HP(vfd) CP(vfd) Feed Pressurized Pressurized BRP Side Conduit • Side conduit disengaged after a single cycle is monitored by conductivity or volumetrically. • Valves operate at isobaric conditions, mildly, without delicate timing considerations. HP = High Pressure Pump, CP = Circulation Pump, BRP = Brine replacement Pump, O = 2 way valve, = Non return valve

  26. SWRO CCD Closed Circuit Desalination (CCD) continues to the next sequence while disengaged side conduit is decompressed to atmospheric pressure (at a negligible loss of hydraulic energy). Closed Circuit Permeate HP(vfd) CP(vfd) Feed Pressurized AP BRP Side Conduit HP = High Pressure Pump, CP = Circulation Pump, BRP = Brine replacement Pump, O = 2 way valve, = Non return valve

  27. SWRO CCD Closed Circuit Desalination (CCD) continues with the next sequence, while in the disengaged side conduit fresh feed is replacing the brine at near Atmospheric Pressure (AP). Closed Circuit Permeate HP(vfd) CP(vfd) Feed Pressurized AP Brine at AP BRP Side Conduit HP = High Pressure Pump, CP = Circulation Pump, BRP = Brine replacement Pump, O = 2 way valve, = Non return valve

  28. SWRO CCD implemented for high salinity brackish source In operation since early 2009. Rear View Front View HP SC PV CP SC PV CP HP

  29. SWRO CCD Advantages • Energy consumption reduction of 30%-45% (depending on flux) • Practically zero loss to brine side. • Reduced loss to permeate side thanks to variable pressure. • Reduction in CAPX • No need for Energy Recovery Devices (ERD). • Not subject to ERDs diseconomy of scale  superb scalability (addressed later). • Fewer membranes (reducing up to 60% of the membranes. 1-4 per housing). • Ultimate recovery – reducing pre treatment and brine rejection CAPEX. • Reduction in OPEX • Reduction in membranes erosion through reduction in mechanical fouling (of head and tail membranes), bio-fouling and scaling. • Ultimate recovery – reduced pre treatment OPEX. • Improved permeate quality (at any given recovery, result from higher flux rates). • Relaxed operation at isobaric conditions – avoiding mechanical loads & timings. • Unmatched operational flexibility – A given system can maintain high recovery at maximum production rate for several hours a day and then switch to maximum energy saving mode. Better coping with source conditions variations.

  30. BWRO CCD US 7,628,921 & related patents granted worldwide

  31. Conventional BWRO • BWRO – Brackish Water RO (refers also to surface and ground water). • Source recovery is a MAJOR issue. 50% Booster pump 100% 25% Flow / 2 Salinity x 2 Pressure < Booster pump 12.5% 87.5% 12.5% Drawbacks • A LOT of membrane elements with very poor average utilization. • Stages and as required, boosters and turbochargers. • Limited source recovery.

  32. Continuous hydrostatic process Permeate HP(vfd) CP(vfd) Feed Closed Circuit Desalination Flow Conditions: Q permeate = Q feed, 100% Recovery, ~90% of the Time

  33. Continuous hydrostatic process Permeate HP(vfd) CP(vfd) Feed “Plug Flow” Desalination & Brine Rejection Flow Conditions: Q feed = Q permeate + Q brine ~40% Recovery, ~10% of the Time Brine rejected at minimum sequence pressure

  34. Continuous hydrostatic process Permeate HP(vfd) CP(vfd) Feed Returning to Closed Circuit Desalination Flow Conditions: Q permeate = Q feed, 100% Recovery, ~90% of the Time

  35. BWRO CCD • Energy for high recovery applications is typically 6% higher compared to SWRO CCD, but this is typically still 30% below the conventional systems, while this technology greatly increase the CAPEX reduction. • High recovery is extremely important in BWRO and industrial water treatment applications, and BWRO achieves any attainable recovery, at lower energy, reduced scaling and fouling and reduced CAPEX and OPEX. • Any uniform CCD system can cope with any source salinity, recovery and application – there is no need to design specifically for the specific circumstances, and the performance is far better than that of a fully optimized conventional system for the specific source. • Operational flexibility enables coping with variations in source conditions which characterize brackish and industrial water sources.

  36. COMMERERCIAL 10xME4 BWRO-CCD UNIT for 45+5 m3/h capable of 87% Recovery with a Difficult Feed Source of 8,500 μS/cm C

  37. SWRO CCD field results CCD Application to Mediterranean Water (4.2%) using a unit configuration 4xMEn (n=2-4)

  38. Schematic Design of the SWRO-CCD 4MEn (n=2-4) Unit Permeate ME PV Brine CP HPB HP Lubrication Leakage Feed BRP HP(vfd), Danfoss 10 m3/h 82 bar: CP(vfd),FEDCO 45 m3/h 1.0+0.5 bar HPB, HP Booster (~1.8 bar):BRP, Brine Replacement Pump (60 m3/h, 1.8 bar) ME, Membrane Elements (SWC6):PV, Pressure Vessels

  39. Front View of the SWRO-CCD 4MEn (n=2-4) Unit PV SC CP HP

  40. Rear View of the SWRO-CCD 4MEn (n=2-4) Unit PV SC CP

  41. CCD 4MEn vs. the most efficient SWRO Mega Plant in Israel RO Energy (HP+HPB+CP) & BRP 4xMEn (n=2-4) MED-4.2% TRIAL Actual CCD results with current low pumping efficiency Saved Energy 28% 24% PELTON: 00% Saved Membranes 35% 23% 19% Saved Energy PX:

  42. CCD 4MEn vs. the most efficient SWRO Mega Plant Extrapolated RO Energy (HP+HPB+CP) & BRP 4xMEn (n=2-4) MED-4.2% for pumps efficiency of 88%HP 60%CP (which is attainable in our next units, and which is much closer to that of the Mega plant). Saved Energy 38% 34% PELTON: 00% Saved Membranes 35% 33% 30% Saved Energy PX:

  43. Extrapolated RO Energy (HP+HPB+CP) & BRP 4xMEn (n=2-4) Ocean-3.5% at efficiencies of 88%HP 60%CP Average Flux

  44. 8.6 m 4 m 2{60ME4}+8M(32”-700cm) 10,080 m3/day (21.5 lmh) 7,502 m3/day (16.0 lmh) 7 m HP 312-420 m3/h CP 625+50 m3/h 26.5 m3 CC Volume Dimensions: 9(l)-4(w)-7(h) CP located in the inner space between the 60xME4 sub-units CP Pressurized Feed Brine outlet Feed inlet

  45. 8.6 m 4 m 2{60ME4}+8M(32”-700cm) M 7 m 26.5 m3 (3.3 m3 per container) Dimensions: 7.0(l)-1.0(w)-7.0(h) CP

  46. CCD Scalability 2{60ME4}+8M(32”-700cm) • Isobaric Energy Recovery Devices (most advanced ERD systems) suffer from diseconomy of scale, so dramatic enlargements are not expected there. • In opposite, the side conduit of the CCD may be enlarged to any desired volume (as seen on the right, and way beyond), and still, it will not require more than 3 valves and a single non return valves. • In addition, a single side conduit may serve more than one closed circuit. • The result – dramatic CAPEX reduction for MEGA plants. M 26.5 m3 (3.3 m3 per container) Dimensions: 7.0(l)-1.0(w)-7.0(h)

  47. 20,160m3/day (840 m3/h)Conduit Shared 2{120xME4}+8M(32”-700 cm) System SHOWING: Side conduit recharged (~1.0 min.) while A&B operated & disengaged Shared Side Conduit Configuration 120xME4 SWRO-CCD Unit-A: 10,080 m3/day 8M (D32”– 700cm) Brine 120xME4 SWRO-CCD Unit-B: 10,080 m3/day Pretreated Feed Permeate

  48. 20,160m3/day (840 m3/h)Conduit Shared 2{120xME4}+8M(32”-700 cm) System SHOWING: Charged Side Conduit on stand-by for Engagement with A Shared Side Conduit Configuration 120xME4 SWRO-CCD Unit-A: 10,080 m3/day 8M (D32”– 700cm) Brine 120xME4 SWRO-CCD Unit-B: 10,080 m3/day Pretreated Feed Permeate

  49. Thanks

More Related