1 / 31

REACTORES NUCLEARES

REACTORES NUCLEARES. REACTORES NUCLEARES. Deivis Campos Cabezas A91264. Deivis Campos Cabezas A91264. ¿Qué es un Reactor Nuclear?.

brac
Download Presentation

REACTORES NUCLEARES

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. REACTORES NUCLEARES REACTORES NUCLEARES Deivis Campos Cabezas A91264 Deivis Campos Cabezas A91264

  2. ¿Qué es un Reactor Nuclear? Es una instalación física donde se produce, mantiene y controla una reacción nuclear en cadena. Por lo tanto, en un reactor nuclear se utiliza un combustible adecuado que permita asegurar la normal producción de energía generada por las sucesivas fisiones. Algunos reactores pueden disipar el calor obtenido de las fisiones, otros sin embargo utilizan el calor para producir energía eléctrica. El primer reactor construido en el mundo fue operado en 1942, en dependencias de la Universidad de Chicago (USA), bajo la atenta dirección del famoso investigador Enrico Fermi. De ahí el nombre de “Pila de Fermi”, como posteriormente se denominó a este reactor. Su estructura y composición eran básicas si se le compara con los reactores actuales existentes en el mundo, basando su confinamiento y seguridad en sólidas paredes de ladrillos de grafito.

  3. Pila de Fermi

  4. La potencia de un reactor de fisión puede variar desde unos pocos kW térmicos a unos 4500 MW térmicos (15 MW "eléctricos"). Deben ser instalados en zonas cercanas al agua, como cualquier central térmica, para refrigerar el circuito, y deben ser emplazados en zonas sísmicamente estables para evitar accidentes. Poseen grandes medidas de seguridad. No emiten gases que dañen la atmósfera pero producen residuos radiactivos que duran decenas de miles de años, y que deben ser almacenados para su posterior uso en reactores avanzados y así reducir su tiempo de vida a unos cuantos cientos de años.

  5. Elementos de un Reactor Nuclear

  6. Partes Esenciales de un Reactor de Fisión Nuclear • El Combustible: Material fisionable utilizado en cantidades específicas y dispuesto en forma tal, que permite extraer con rapidez y facilidad la energía generada. El combustible en un reactor se encuentra en forma sólida, siendo el más utilizado el Uranio bajo su forma isotópica de U-235. Sin embargo, hay elementos igualmente fisionables, como por ejemplo el Plutonio que es un subproducto de la fisión del Uranio. En la naturaleza existe poca cantidad de Uranio fisionable, es alrededor del 0,7%, por lo que en la mayoría de los reactores se emplea combustible “enriquecido”, es decir, combustible donde se aumenta la cantidad de Uranio 235. • Barras de Combustible: Son el lugar físico donde se confina el Combustible Nuclear. Algunas Barras de Combustible contienen el Uranio mezclado en Aluminio bajo la forma de láminas planas separadas por una cierta distancia que permite la circulación de fluido para disipar el calor generado. Las láminas se ubican en una especie de caja que les sirve de soporte.

  7. Partes Esenciales de un Reactor de Fisión Nuclear • Núcleo del Reactor: Está constituido por las Barras de Combustible. El núcleo posee una forma geométrica que le es característica, refrigerado por un fluido, generalmente agua. En algunos reactores el núcleo se ubica en el interior de una piscina con agua, a unos 10 a 12 metros de profundidad, o bien al interior de una vasija de presión construida en acero. • Barras de Control: Todo reactor posee un sistema que permite iniciar o detener las fisiones nucleares en cadena. Este sistema lo constituyen las Barras de Control, capaces de capturar los neutrones que se encuentran en el medio circundante. La captura neutrónica evita que se produzcan nuevas fisiones de núcleos atómicos del Uranio. Generalmente, las Barras de Control se fabrican de Cadmio o Boro.

  8. Partes Esenciales de un Reactor de Fisión Nuclear • Moderador: Los neutrones obtenidos de la fisión nuclear emergen con velocidades muy altas (neutrones rápidos). Para asegurar continuidad de la reacción en cadena, es decir, procurar que los “nuevos neutrones” sigan colisionando con los núcleos atómicos del combustible, es necesario disminuir la velocidad de estas partículas (neutrones lentos). Se disminuye la energía cinética de los neutrones rápidos mediante choques con átomos de otro material adecuado, llamado Moderador. Se utiliza como Moderador el agua natural (agua ligera), el agua pesada (deuterada), el Carbono (grafito), etc. • Refrigerante: El calor generado por las fisiones se debe extraer del núcleo del reactor. Para lograr este proceso se utilizan fluidos en los cuales se sumerge el núcleo. El fluido no debe ser corrosivo, debe poseer gran poder de absorción calorífico y tener pocas impurezas. Se puede utilizar de refrigerante el agua ligera, el agua pesada, el anhídrido carbónico, etc.

  9. Partes Esenciales de un Reactor de Fisión Nuclear • Blindaje: En un reactor se produce gran cantidad de todo tipo de radiaciones, las cuales se distribuyen en todas direcciones. Para evitar que los operarios del reactor y el medio externo sean sometidos indebidamente a tales radiaciones, se utiliza un adecuado “Blindaje Biológico” que rodea al reactor. Los materiales más usados en la construcción de blindajes para un reactor son el agua, el plomo y el hormigón de alta densidad, con a los menos 1,5 metros de espesor.

  10. Tipos de reactores nucleares de fisión • LWR - Light Water Reactors (Reactores de agua ligera): utilizan como refrigerante y moderador el agua. Como combustible uranio enriquecido. Los más utilizados son los PWR (Pressure Water Reactor o reactores de agua a presión) y los BWR (Boiling Water Reactor o reactores de agua en ebullición): 264 PWR y 94 BWR en funcionamiento en el 2007. • CANDU - Canada Deuterium Uranium (Canadá deuterio uranio): Utilizan como moderador y refrigerante agua pesada (compuesta por dos átomos de deuterio y uno de oxígeno). Como combustible utilizan uranio natural: 43 en funcionamiento en el 2007. • FBR - Fast Breeder Reactors (reactores rápidos realimentados): utilizan neutrones rápidos en lugar de térmicos para la consecución de la fisión. Como combustible utiliza plutonio y como refrigerante sodio líquido. Este reactor no necesita moderador: 4 operativos en el 2007. Solo uno en operación.

  11. Tipos de reactores nucleares de fisión • AGR - Advanced Gas-cooled Reactor (reactor refrigerado por gas avanzado): usa uranio como combustible. Como refrigerante utiliza CO2 y como moderador grafito: 18 en funcionamiento en el 2007. • RBMK - Reactor Bolshoy Moshchnosty Kanalny (reactor de canales de alta potencia): su principal función es la producción de plutonio, y como subproducto genera energía eléctrica. Utiliza grafito como moderador y agua como refrigerante. Uranio enriquecido como combustible. Puede recargarse en marcha. Tiene un coeficiente de reactividad positivo. El reactor de Chernóbil era de este tipo. Existían 12 en funcionamiento en el 2007. • ADS - Accelerator Driven System (sistema asistido por acelerador): utiliza una masa subcrítica de torio, en la que se produce la fisión solo por la introducción, mediante aceleradores de partículas, de neutrones en el reactor. Se encuentran en fase de experimentación, y se prevé que una de sus funciones fundamentales sería la eliminación de los residuos nucleares producidos en otros reactores de fisión.

  12. Aplicaciones • Generación nuclear: • Producción de calor para la generación de energía eléctrica • Producción de calor para uso doméstico e industrial • Producción de hidrógeno mediante electrólisis de alta temperatura • Desalación • Propulsión nuclear: • Marítima • Cohetes de propulsión térmica nuclear (propuesta). • Cohetes de propulsión nuclear pulsada (propuesta).

  13. Aplicaciones • Transmutación de elementos: • Producción de plutonio, utilizado para la fabricación de combustible de otros reactores o de armamento nuclear • Creación de diversos isótopos radiactivos, como el americio utilizado en los detectores de humo, o el cobalto-60 y otros que se utilizan en los tratamientos médicos • Aplicaciones de investigación, incluyendo: • Su uso como fuentes de neutrones y de positrones (Ej: para su uso de análisis mediante activación neutrónica o para el datado por el método de potasio-argón). • Desarrollo de tecnología nuclear.

  14. Ventajas de los reactores nucleares de fisión • Una de las ventajas de los reactores nucleares actuales es que casi no emiten contaminantes al aire (aunque periódicamente purgan pequeñas cantidades de gases radiactivos), y los residuos producidos son muchísimo menores en volumen y más controlados que los residuos generados por las plantas alimentadas por combustibles fósiles. • El uranio enriquecido utilizado en las centrales nucleares no sirve para construir un arma nuclear ni para usar uranio procedente de ellas. Para ello se diseñan los reactores en ciclos de alto enriquecimiento o bien se usan diseños como reactores tipo RBMK usados para la generación de plutonio.

  15. Últimamente se investigan centrales de fisión asistida, donde parte de los residuos más peligrosos serían destruidos mediante el bombardeo con partículas procedentes de un acelerador (protones seguramente) que por espalación producirían neutrones que a su vez provocarían la transmutación de esos isótopos más peligrosos. Esta sería una especie de central de neutralización de residuos radiactivos automantenida. El rendimiento de estas centrales sería en principio menor, dado que parte de la energía generada se usaría para la transmutación de los residuos. Se estima que la construcción del primer reactor de transmutación (Myrrha) comenzará en el año 2014.

  16. Desventajas de los reactores nucleares de fisión • El peligro para la población proviene de varios factores: 1) accidente en una central atómica, 2) ataque terrorista, 3) peligrosidad de los residuos y su alto poder contaminante del medio ambiente, 4) basureros nucleares, 5) posible desviación de los residuos para la producción de armas de destrucción masiva. • Los reactores nucleares generan residuos radiactivos. Algunos de ellos con un semiperiodo elevado, como el americio, el neptunio o el curio y de una alta toxicidad. Los detractores de la energía nuclear hacen hincapié en el peligro de esos residuos que duran cientos e incluso miles de años. • Algunas reactores nucleares se utilizaron para generar plutonio 239 utilizado en el armamento nuclear. Los reactores civiles generan plutonio pero el plutonio 239 (requerido en las armas nucleares) aparece mezclado con altas proporciones de plutonio 240, 238, 240 y 242, lo hace inviables para uso militar.

  17. Desventajas de los reactores nucleares de fisión • Los accidentes nucleares más graves han sido: Mayak (Rusia) en 1957, Windscale (Gran Bretaña) en 1957, Three Mile Island (EE. UU.) en 1979, Chernóbil (Ucrania) en 1986, Tokaimura (Japón) en 1999 y Fukushima (Japón) 2011. • La peligrosidad de los residuos nucleares es un tema altamente controvertido. Estos se suelen asociar a la generación de energía nuclear de fisión, sin embargo existen infinidad de fuentes radiactivas empleadas en diversos usos que también son enterradas en cementerios nucleares. La mayoría de los países tienen empresas nacionales encargadas de la gestión de estos residuos, normalmente la tarifa eléctrica incluye un porcentaje que se destina a este fin. • En la actualidad no existen almacenes definitivos destinados al enterramiento del combustible gastado, se suelen mantener en piscinas en los mismos emplazamientos de los reactores o en almacenes centralizados. Para muchos esta es la opción más razonable puesto que en el combustible gastado conserva el 95% del uranio, lo que permitirá en el futuro su reutilización, de hecho algunos países ya lo hacen pero la técnica es muy costosa.

  18. Fukushima

  19. Reactor nuclear de fusión • Instalación destinada a la producción de energía mediante la fusión nuclear. Tras más de 60 años de investigación en este campo, se ha logrado mantener una reacción controlada, si bien aún no es energéticamente rentable. • La mayor dificultad se halla en soportar la enorme presión y temperatura que requiere una fusión nuclear (que sólo es posible encontrar de forma natural en el núcleo de una estrella). Además este proceso requiere una enorme inyección de energía inicial (aunque luego se podría automantener ya que la energía desprendida es mucho mayor). • Actualmente existen dos líneas de investigación, el confinamiento inercial y el confinamiento magnético.

  20. Reactor nuclear de fusión • Elconfinamiento inercial consiste en contener la fusión mediante el empuje de partículas o de rayos láser proyectados contra una partícula de combustible, que provocan su ignición instantánea. Los dos proyectos más importantes a nivel mundial son el NIF (National Ignition Facility) en EE.UU. y el LMJ (Láser Mega Joule) en Francia. • El confinamiento magnético consiste en contener el material a fusionar en un campo magnético mientras se le hace alcanzar la temperatura y presión necesarias. El hidrógeno a estas temperaturas alcanza el estado de plasma.

  21. Seguridad en los Reactores Nucleares • Sistemas de Control. Básicamente está constituido por las barras de control y por diversa instrumentación de monitoreo. Las barras de control son accionadas por una serie de sistemas mecánicos, eléctricos u electrónicos, de tal manera de asegurar con rapidez la extinción de las reacciones nucleares. La instrumentación de monitoreo se ubica en el interior o en el exterior del núcleo del reactor y su finalidad es mantener constante vigilancia de aquellos parámetros necesarios para la seguridad: presión, temperatura, nivel de radiación, etc.

  22. Seguridad en los Reactores Nucleares • Sistemas de Contención Constituido por una serie de barreras múltiples que impiden el escape de la radiación y de los productos radiactivos. La primera barrera, en cierto tipo de reactores, es un material cerámico que recubre el Uranio utilizado como elemento combustible. La segunda barrera es la estructura que contiene al Uranio, es decir, se trata de las barras de combustible. La tercera barrera es la vasija que contiene el núcleo del reactor. En los reactores de potencia se denomina vasija de presión y se construye de un acero especial con un revestimiento interior de acero inoxidable.

  23. Seguridad en los Reactores Nucleares La cuarta barrera lo constituye el edificio que alberga al reactor en su conjunto. Se conoce con el nombre de “Edificio de Contención” y se construye de hormigón armado de, a lo menos, 90 cm de espesor. Se utiliza para prevenir posibles escapes de productos radiactivos al exterior, resistir fuertes impactos internos o externos, soportar grandes variaciones de presión y mantener una ligera depresión en su interior que asegure una entrada constante de aire desde el exterior, de tal forma de evitar cualquier escape de material activado.

  24. Seguridad en los Reactores Nucleares • Concepto de Seguridad a Ultranza. Toda central nuclear se diseña y construye bajo el concepto de Seguridad a Ultranza, es decir, se privilegia ante todo la seguridad de toda instalación. Se busca reducir al mínimo posible toda exposición a las radiaciones, no sólo en caso de accidente, sino durante las operaciones normales de su personal. • Ciclo del Combustible Nuclear El Ciclo del Combustible Nuclear son todos los procesos por los cuales se somete al Uranio desde que se extrae de la tierra hasta su utilización en el reactor y su posterior reelaboración o su almacenamiento como residuo. Consta de las siguientes etapas:

  25. Seguridad en los Reactores Nucleares • 1. Primera etapa de Minería y Concentración del Uranio. • 2. Segunda etapa de Conversión y Enriquecimiento. • 3. Tercera etapa de Fabricación de Elementos Combustibles. • 4. Cuarta etapa de Uso del Combustible en un reactor. • 5. Quinta etapa de Reelaboración. • 6. Sexta etapa de Almacenamiento de Residuos.

  26. BOMBAS SUCIAS

  27. Bombas sucias Término que se utiliza para denominar a los artefactos explosivos que diseminan elementos radiactivos en la atmósfera. Se ha usado para denominar a uno de los posibles tipos de los llamados dispositivos de dispersión radiológica (DDR). Otra denominación que se utiliza para este artefacto es el de bomba radiológica.

  28. Bombas sucias • Una bomba sucia es una mezcla de explosivos (como la dinamita) y polvo o perdigones radioactivos. Cuando la bomba estalla, la explosión lanza material radioactivo a las zonas circunvecinas. La mayoría de las lesiones provocadas por una bomba sucia son producto de la explosión.

  29. Características Si esta se encuentra bien fabricada pulverizaría el material lo suficiente como para dispersarlo y existiría la probabilidad de contaminar una zona de una ciudad poblada. El área que se contaminaría sería mayor o menor dependiendo de las condiciones atmosféricas, siendo tanto más peligrosa la radiactividad cuanto menos se dispersara, pero a la contra, si se dispersara mucho afectaría a más personas. No es probable el uso de este tipo de armas en aplicaciones militares debido a su baja letalidad y a que sus efectos probabilísticos (como el cáncer) aparecerían demasiado tarde para convertir la bomba sucia en un arma efectiva. Es más probable su uso estratégico pero incluso éste resulta bastante peligroso ya que puede convertirse fácilmente en un arma de doble filo.

  30. Efectos • Además de los estudios realizados por Irak, prácticamente todas las agencias del mundo ocupadas de la seguridad de las fuentes radiactivas, ya civiles o militares, se han volcado en conocer los posibles efectos de uno de estos artefactos. • Tanto la OIEA (Organización Internacional para la Energía Atómica), la ICRP (International ComissiononRadiologicalProtection), la HPS (HealthPhysicsSociety) y otros organismos, están de acuerdo en afirmar que los efectos inmediatos a la salud no serán mayores que los producidos por el explosivo en sí mismo

  31. Gracias por su atención…

More Related