170 likes | 277 Views
Description of PHOBOS data on v 2 ( h ) from s NN = 19.6 to 200 GeV. A. Ster 1,2 , M. Csanád 3 , T. Csörgő 2. 1 KFKI-RMKI, 2 KFKI-MFA, 3 ELTE, Hungary. Buda-Lund hydrodynamical model Buda-Lund ellipsoidal generalization Buda-Lund fitting to PHOBOS recent data Conclusion.
E N D
Description of PHOBOS data on v2(h) from sNN = 19.6 to 200 GeV A. Ster1,2, M. Csanád3, T. Csörgő2 1 KFKI-RMKI, 2 KFKI-MFA, 3 ELTE, Hungary • Buda-Lund hydrodynamical model • Buda-Lund ellipsoidal generalization • Buda-Lund fitting to PHOBOS recent data • Conclusion
Buda-Lund hydro model • 3D expansion with axial or ellipsoidal symmetry • Local thermal equilibrium • Analytic expressions for the observables (no numerical simulations, but formulas) • Reproduces known exact hydro solutions (nonrelativistic, Hubble, Bjorken limit) • Core-halo picture (long lived resonances)
An illustrative analogy • Core Sun • HaloSolar wind • T0,RHIC T0,SUN 16 million K • Tsurface,RHIC Tsurface,SUN 6000 K • RG Geometrical size • t0 Radiation lifetime • <bt> Radial flow of surface (~0) • DhLongitudinal expansion (~0) Fireball at RHICFireball Sun
Buda-Lund: spectra, HBT w/o puzzles J.Phys.G30: S1079-S1082, 2004; nucl-th/0403074
Ellipsoidal generalization • Axially symmetric case: RG, ut • Main axes of expanding ellipsoid: X, Y, Z • 3D expansion, 3 expansion rates: X, Y, Z • Introducing velocity space eccentricity • For Hubble type of expansions: X(t)Xt, ... • In this case: e ev • In addition: DhZ
The ellipsoidal Buda-Lund model • The original model was developed for axial symmetry central collisions • In the most general hydrodynamical form (‘Inspired by’ nonrelativistic solutions): • Assume special shapes: • Generalized Cooper-Frye prefactor: • Four-velocity distribution: • Temperature: • Fugacity: M.Csanád, T.Csörgő, B. Lörstad: Nucl.Phys.A742:80-94,2004; nucl-th/0310040
Observables from Buda-Lund hydro • Core-halo correction: • One-particle spectrum with core-halo correction: • Two-particle correlation function: • Flow coefficients:
The elliptic flow • One-particle spectrum: • The m-th Fourier component is the m-th flow • Depends on pseudorapidity and transverse momentum • Pseudorapidity dependence not understood in other hydro models (but ref: plenary talk of Hama/SPHERIO)
Hydro predicts universal scaling • Universal scaling variable • Universal scalig function: • Elliptic flow depends on every physical parameter (mass, colliding system, bombarding energy, pt, rapidity,centrality) only through universal scaling variable w • Do data collapse to the scaling curve of I1 / I0 ?
At large pseudorapidities • Under certain conditions, the even flows are: , where and • Here hs is the space-time rapidity of the saddlepoint • , and so • Rapidity grows the asymmetry vanishes(saddlepoint goes to the z axis) elliptic flow vanishes
Fits to PHOBOS data PHOBOS data from: Phys. Rev. Lett. 94, 122303 (2005)
Fit parameters • Used (non-essential) model parameters: • Fitted parameters: Increasing parameter values with energy
Universal scaling • Data collapsing behavior to theoretically predicted scaling function The perfect fluid extends from very small to very large rapidities at RHIC
Conclusions • Buda-Lund model describes v2(h) data @RHIC • The vanishing elliptic flow at large rapidities is due to Hubble flow + finite longitudinal size • v2(h) data (2005) collapse to the theoretically PREDICTED (2003) scaling function of • The perfect fluid is present in AuAu in the whole h space
cs2 = 2/3 cs2 = 1/3 Sensitivity to the Equation of State • Different initial conditions, different equation of statebut exactly the same hadronic final state possible. (!!) • This is an exact, analytic result in hydro( !!).
Time dependence • Blastwave or Cracow model type of cooling vs Buda-Lund typeof cooling, cs2= 2/3, half freeze-out time (animated) http://csanad.web.elte.hu/phys/3danim/