1 / 18

GERB mirror mechanism, pointing and repeatability (Tech Note MSG-RAL-GE-TN-2011)

GERB mirror mechanism, pointing and repeatability (Tech Note MSG-RAL-GE-TN-2011). B.C.Stewart RAL. Topics. Mirror data and noise E-W Scanning and SOE-SOL MSG rotation Effect on mirror rotation rate Effect on scanning Effect on SOE-SOL Conclusions Mirror timing offset

Download Presentation

GERB mirror mechanism, pointing and repeatability (Tech Note MSG-RAL-GE-TN-2011)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. GERB mirror mechanism, pointing and repeatability(Tech Note MSG-RAL-GE-TN-2011) B.C.Stewart RAL GERB mirror mechanism

  2. Topics • Mirror data and noise • E-W Scanning and SOE-SOL • MSG rotation • Effect on mirror rotation rate • Effect on scanning • Effect on SOE-SOL • Conclusions • Mirror timing offset • Motor Pole + torque level GERB mirror mechanism

  3. Mirror data INDUCTOSYN data from ‘SNAP shot’ mode 4096 samples, 343.3μsec sample time Resolution: 204800Dn = 360º (encoder) 20Dn  4.2’  1 pixel (Earth view) Characterisation SOL pulse STEP size and rotation rate GERB mirror mechanism

  4. Mirror position noise • Difference between a typical scan and mean • RMS  1.3Dn  0.27’  0.07 pixel GERB mirror mechanism

  5. Scanning • Scanning achieved by changing step size (scan rate constant) • 2 values corresponding to E-W and W-E scans • Difference of ~40 Dn corresponds to a scan STEP size of ~4.2’ in each direction i.e. NORMAL mode GERB mirror mechanism

  6. SOE - SOL Measured SOL–SOE for a scan, shows variation from 126º-146º (apparent width of Earth at GEO orbit) Subtracting a straight line shows RMS residual of ~0.2’ (0.05 pixel) - consistent with RMS in mirror data GERB mirror mechanism

  7. MSG rotation MSG spin period ~601.617 msec 15min cycle from SEVERI scanning also long term smaller amplitude periodicities 0.01% change in period (~0.5 pixel) GERB mirror mechanism

  8. Mirror Rotation (SEVIRI on) Mirror control system ensures GERB mirror rotation rate follows MSG spin period digital system, GERB mirror rate changes in discrete steps max difference between ‘ideal’ and ‘actual’ positions is ~0.1 pixel (i.e. 3.8’ rather than 4.2’ scan step) ‘noise’ at transitions GERB mirror mechanism

  9. Scanning (SEVIRI on) Two slopes as before but ‘tops’ are not flat Re-plotted with average value subtracted Saw-tooth pattern corresponds to changes in rotation rate Steps are ~ 4Dn i.e. 0.2 pixel GERB mirror mechanism

  10. SOE – SOL (SEVIRI on) SOL–SOE residuals for many scans ‘spikes’ correspond to 1st line of each scan Mean of sets of 16 packets. Same behaviour as for the mirror rotation steps Step size ~0.4 arc min ~0.8 at Earth (0.2 pixel) RMS (not shown, again ~0.2’) GERB mirror mechanism

  11. Conclusions Mirror control system locates scan lines to ~0.05 pixel SEVIRI scanning does not affect RMS of line positions but causes them to be non-uniform, at level of 0.2 pixel, at the mirror rotation rate transitions Non-uniformity is not repeatable from scan to scan GERB mirror mechanism

  12. Mirror face effect Observation of Earth limb with step size of 0.15’ (~1/28th NORMAL scan step) Alternate values correspond to the 2 mirror faces. Difference is ~2-3 steps GERB mirror mechanism

  13. Post timing correction Observation of Earth limb with step size of 0.15’ (~1/28th NORMAL scan step) ’Optimum’ correction of ~2.7 pixels (0.4’) Residual effects probably from variations and noise in step size (0.05’ and up to 0.2’) GERB mirror mechanism

  14. Motor pole Filtered to remove high frequency INDUCTOSYN effect Enlargement has slope removed GERB mirror mechanism

  15. Torque level Torque levels 1, 2 and 3 Effect is to add higher frequency components GERB mirror mechanism

  16. RMS scan residuals Torque levels 1, 2 and 3 Effect of higher level is to reduce the RMS scan residual GERB mirror mechanism Fig 10.1.11

  17. Typical limb data 2nd Aug 2003 Observation of Earth limb with step size (x-axis) of 0.15’ (~1/28th NORMAL scan step) Plots are averages over 10 detector pixels and are 150 scan steps wide Slopes are average over 4 scan steps 40 pixels * 150 scan steps GERB mirror mechanism

  18. E-W limb position 1st-4th Aug 2003 1st Aug 2nd Aug 3rd Aug 4th Aug GERB mirror mechanism

More Related