580 likes | 702 Views
A Unified Approach to Deterministic Encryption and a Connection to Computational Entropy. Adam O’Neill Leonid Reyzin Boston University. Benjamin Fuller Boston University & MIT Lincoln Lab. Public Key Encryption ( PKE ). m. Enc. $. c. PK.
E N D
A Unified Approach to Deterministic Encryption and a Connection to Computational Entropy Adam O’Neill Leonid ReyzinBoston University Benjamin FullerBoston University& MIT Lincoln Lab
Public Key Encryption (PKE) m Enc $ c PK Need randomness to achieve semantic security
Public Key Encryption (PKE) m Enc $ PK What can be achieved without randomness?
Why deterministic PKE? • The question of deterministic symmetric key encryption is well understood: Key: k Messages: m1, …, mn Encryption: pad1 || … || padn = prg(k) ci = padimi • Deterministic PKE is difficult but has important applications: • Supporting devices with limited/no randomness • Enabling encrypted search • E.g. spam filtering by keyword on encrypted email prg – pseudorandom generatorEach bit appears random tobounded distinguisher
Deterministic PKE • PKE scheme where encryption is deterministic • Introduced by [BellareBoldyrevaO’Neill07] • Need source of randomness messages are only hope • Security defined w.r.t. high entropy message distribution M • H∞(M)≥μ for all m, Pr[M=m] ≤ (1/2)μ • Even most likely message is hard to guess • E.g.: Uniform with first bit 1, Network packet with fixed header • Message distribution must be independent of public key • An approach: fake coins to chosen plaintext-secure (CPA) scheme[Bellare BoldyrevaO’Neill07, BelllareFischlinO’NeillRistenpart08]
Results • Deterministic PKE from: • General: Arbitrary TDF with enough hardcore bits • Efficient: Single application of TDF • Framework yields constructions from NiederreiterRSA & Paillier • These TDFs have many hardcore bits under non-decisional (search) assumptions • Tools of independent interest: • Improved Equivalence between Indistinguishability & Semantic Security • Conditional Computational Entropy • First deterministic PKE for qarbitrarily correlatedmessages • Extension of LHL to correlated sources using 2q-wise indep. hash • Extension of crooked LHL to improve parameters
Results • Deterministic PKE from: • General: Arbitrary TDF with enough hardcore bits • Efficient: Single application of TDF • Framework yields constructions from Niederreiter RSA & Paillier • These TDFs have many hardcore bits under non-decisional (search) assumptions • Tools of independent interest: • Improved Equivalence between Indistinguishability & Semantic Security • Conditional Computational Entropy • First deterministic PKE for qarbitrarily correlatedmessages • Extension of LHL to correlated sources using 2q-wise indep. hash • Extension of crooked LHL to improve parameters Focus of the talk
Our Scheme: Encrypt with hardcore Enchc Enc m $ PK
Our Scheme−Enchc TDF–Trapdoor function hc– Hardcore function Ext – Randomness extractor Enc – Randomized Encrypt Alg. TDF: Easy to compute, hard to invert without key hc: Pseudorandom given output of TDF Ext: Converts high entropy distributions to uniform Enc TDF m Ext hc PK
Our Scheme−Enchc TDF–Trapdoor function hc– Hardcore function Ext – Randomness extractor Enc – Randomized Encrypt Alg. Enc TDF m Ext hc PK Question: Why is this semantically secure?
Outline of Security Proof Indistinguishability Semantic Security For a message distribution M m c Enc Ext PK TDF hc General Definitional Equivalence
Semantic Security for Deterministic PKE Adversary Challenger DetEnc M – message distribution f – test function b A DetEnc(mb), pk Compute f from ciphertext
Semantic Security for Deterministic PKE Adversary Challenger DetEnc M – message distribution f – test function b A DetEnc(mb), pk Compute f from ciphertext Compute f from random ciphertext
Indistinguishability for Deterministic PKE Adversary Challenger M0– message distribution M1– message distribution b A DetEnc DetEnc(m), pk
Outline of Security Proof Indistinguishability: Semantic Security: For a message distribution M m Enc c PK TDF hc General Definitional Equivalence
Outline of Security Proof Indistinguishability:For all pairs M|e0 , M|e1e0, e1 are events s.t.Pr[e0],Pr[e1]≥1/4 Semantic Security: For a message distribution M m Enc c PK TDF hc General Definitional Equivalence
Our Scheme−Enchc TDF–Trapdoor function hc– Hardcore function Ext – Randomness extractor Enc – Randomized Encrypt Alg. Enc TDF m Ext hc PK Question: Why is this secure?
Our Scheme−Enchc TDF–Trapdoor function hc– Hardcore function Ext – Randomness extractor Enc – Randomized Encrypt Alg. Question: Why is this secure indistinguishable? To gain intuition we will try removing the extractor. Enc TDF m Ext hc PK
Toy Scheme−Enchc Question: Is this scheme indistinguishable? NO: hc can reveal the first bit of m. Enccan reveal its first coin. TDF Enc m hc PK
Toy Scheme−Enchc Question: Is this scheme indistinguishable? NO: hc can reveal the first bit of m.Enc can reveal its first coin. TDF Enc m hc PK
Outline of Security Proof Indistinguishability:For all pairs M|e0 , M|e1e0, e1 are events s.t.Pr[e0],Pr[e1]≥1/4 Semantic Security: For a message distribution M m Enc c PK TDF hc
Outline of Security Proof Robust hardcore function: hc is hardcore on M|efor all e, Pr[e] ≥ 1/4 Indistinguishability:For all pairs M|e0 , M|e1e0, e1 are events s.t.Pr[e0],Pr[e1]≥1/4 Semantic Security: For a message distribution M m Enc c PK TDF hc
Outline of Security Proof Robust hardcore function: hc(M|e) is pseudorandom given TDF(M|e)for all e, Pr[e] ≥ 1/4 Indistinguishability:For all pairs M|e0 , M|e1e0, e1 are events s.t.Pr[e0],Pr[e1]≥1/4 Semantic Security: For a message distribution M m Enc c PK TDF hc Q: Is any hcrobust? A: NO! Define event e: fix first bit(previous example!)
Outline of Security Proof Robust hardcore function: hc(M|e) is pseudorandom given TDF(M|e)for all e, Pr[e] ≥ 1/4 Indistinguishability:For all pairs M|e0 , M|e1e0, e1 are events s.t.Pr[e0],Pr[e1]≥1/4 Semantic Security: For a message distribution M m Enc PK TDF hc Q: Is any hcrobust? A: NO! Define event e: fix first bit(previous example!)
Robustness: Implicit in Prior Work TDF Robust hcfunction Iterated trapdoor permutation Lossy trapdoor function Arbitrary trapdoor function [GL89] hc bit at each iteration ([BM84] PRG) [BelllareFischlinO’NeillRistenpart08] Pairwise Independent Hash Function [BoldyrevaFehr O’Neill 08] Any function with enough hc bits + extractor Ext This work
Outline of Security Proof Hardcore function: hc(M)is pseudorandom given TDF(M) Robust hardcore function: hc(M|e) is pseudorandom given TDF(M|e)for all e, Pr[e] ≥ 1/4 Indistinguishability:For all pairs M|e0 , M|e1e0, e1 are events s.t.Pr[e0],Pr[e1]≥1/4 Semantic Security: For a message distribution M m Enc c PK TDF hc Ext( )
Outline of Security Proof m c Enc Ext PK TDF Rest ofthe talk Hardcore function: hc(M)is pseudorandom given TDF(M) Robust hardcore function: hc(M|e) is pseudorandom given TDF(M|e)for all e, Pr[e] ≥ 1/4 Indistinguishability:For all pairs M|e0 , M|e1e0, e1 are events s.t.Pr[e0],Pr[e1]≥1/4 Semantic Security: For a message distribution M hc Ext( )
Outline of Security Proof Hardcore function Robust hardcore function Indistinguishability Semantic Security m c Enc Ext PK TDF hc
Outline of Security Proof Hardcore function Robust hardcore function Indistinguishability Semantic Security m c Enc Ext PK TDF • Hardcore function: hc(M)is pseudorandom given TDF(M) • Comp. Entropy: hc(M|e) high computationalentropy • Uniform Ext Output:Ext( hc(M|e)) pseudorandom • Robust hc function:Ext(hc(M|e) ) | TDF( M|e) pseudorandom hc
(1) Hc function (2) Comp. Entropy • Know: hc produces pseudorandom bits on M • Want: hc produces pseudorandom bits on M|e M hc(M)≈U hc
(1) Hc function (2) Comp. Entropy • Know: hc produces pseudorandom bits on M • Want: hc produces pseudorandom bits on M|e M|e M hc(M)≈U (hc(M|e))≈U hc Problem: hc(M|e) cannot be pseudorandom For example, event e can fix the first bit of hc(M) Solution: Use HILL entropy!
(1) Hc function (2) Comp. Entropy • Know: hc produces pseudorandom bits on M • Want: HHILL( M | E ) is high M|e hc
(1) Hc function (2) Comp. Entropy • Know: hc produces pseudorandom bits on M • Want: HHILL( hc(M|e) ) is high Distinguisher Advantage Distinguisher Size M|e HHILL(X)≥μ if Y, H∞ (Y)≥μX≈ε,sY hc
(1) Hc function (2) Comp. Entropy • Know: hc produces pseudorandom bits on M • Want: HHILL( hc(M|e) ) is high ε,s Distinguisher Advantage Distinguisher Size M|e HHILL(X)≥μ if Y, H∞ (Y)≥μX≈ε,sY hc How is HHILL( hc(M|e) ) related to HHILL( hc(M) )? General question: How is HHILL( X|E=e ) related to HHILL( X )?
Conditional Computational Entropy Info-Theoretic Case: Our Lemma: Warning: this is not HHILL! • Different Y (that has true entropy) for each distinguisher (“metric*”) • Notion used in [Barak Shaltiel Widgerson03] [DziembowskiPietrzak08]
Conditional Computational Entropy Info-Theoretic Case: Our Lemma: Warning: this is not HHILL! • Can be converted to HILL entropy with a loss in circuit size[BSW03, ReingoldTrevisanTulsianiVadhan08] Our Theorem:
Tangent: Avg Case Cond. Entropy Info-Theoretic Case [DodisOstrovskyReyzin Smith 04]: Distribution not a single event! Our Lemma: • We can apply the lemma multiple times to measure H(M |E1,E2) • Cannot measure entropy when original distribution is conditional • Average case conditioning useful for leakage resilience Works on conditional computational entropy: [ReingoldTrevisanTulsianiVadhan08], [DziembowskiPietrzak08],[ChungKalaiLiuRaz11],[GentryWichs10]
(1) Hc function (2) Comp. Entropy Our Theorem: HILL entropy M|e hc
Outline of Security Proof Hardcore function Robust hardcore function Indistinguishability Semantic Security m c Enc Ext PK TDF • Hardcore function: hc(M)is pseudorandom given TDF(M) • Cond. Comp Entropy: hc(M|e) high computationalentropy for e, Pr[e]≥1/4 • Uniform Ext Output:Ext( hc(M|e)) pseudorandom for e, Pr[e]≥1/4 • Robust hc function:Ext(hc(M|e) ) | TDF(M|e) pseudorandom hc
(2) Cond. Comp. Entropy (3) Unif. Ext Output HILL entropy M|e Ext pseudorandom hc Extractors convert distributions w/ min-entropy to uniform w/ HHILL to pseudorandom
Outline of Security Proof Hardcore function Robust hardcore function Indistinguishability Semantic Security m c Enc Ext PK TDF • Hardcore function: hc(M)is pseudorandom given TDF(M) • Cond. Comp Entropy: hc(M|e) high computationalentropy for e, Pr[e]≥1/4 • Uniform Ext Output:Ext( hc(M|e)) pseudorandom for e, Pr[e]≥1/4 • Robust hc function:Ext(hc(M|e) ) | TDF(M|e) pseudorandom hc
(3) Unif. Ext Output (4) Robust hcfunction • Know: hc(M) | TDF(M)is pseudorandom (hcis hardcore) TDF M hc pseudorandom
(3) Unif. Ext Output (4) Robust hcfunction • Know: hc(M) | TDF(M)is pseudorandom (hcis hardcore) • Know: Ext( hc(M|e) ) is pseudorandom ((1) (3)) TDF M hc pseudorandom
(3) Unif. Ext Output (4) Robust hcfunction • Know: hc(M) | TDF(M)is pseudorandom (hcis hardcore) • Know: Ext( hc(M|e) ) is pseudorandom ((1) (3)) TDF M|e hc pseudorandom
(3) Unif. Ext Output (4) Robust hcfunction • Know: hc(M) | TDF(M)is pseudorandom (hcis hardcore) • Know: Ext( hc(M|e) ) is pseudorandom ((1) (3)) TDF M|e hc HILL entropy
(3) Unif. Ext Output (4) Robust hcfunction • Know: hc(M) | TDF(M)is pseudorandom (hcis hardcore) • Know: Ext( hc(M|e) ) is pseudorandom ((1) (3)) • Want: (Ext( hc(M|e) ) | TDF(M|e) ) is pseudorandom TDF Ext M|e hc HILL entropy pseudorandom
(3) Unif. Ext Output (4) Robust hcfunction • Know: hc(M) | TDF(M)is pseudorandom (hcis hardcore) • Know: Ext( hc(M|e) ) is pseudorandom ((1) (3)) • Want: (Ext( hc(M|e) ) | TDF(M|e) ) is pseudorandom Unfortunately our entropy theorem does not work if the starting point is conditional Solution: Consider the joint distribution ( hc(M), TDF(M) ) Condition on e to measure entropy of ( hc(M|e), TDF(M|e) ) TDF Ext M|e hc HILL entropy pseudorandom
(3) Unif. Ext Output (4) Robust hcfunction • Know: hc(M) | TDF(M)is pseudorandom (hcis hardcore) • Know: Ext( hc(M|e) ) is pseudorandom ((1) (3)) • Lemma: (Ext( hc(M|e) ) | TDF(M|e) ) is pseudorandom Unfortunately our entropy theorem does not work if the starting point is conditional Solution: Consider the joint distribution ( hc(M), TDF(M) ) Condition on e to measure entropy of ( hc(M|e), TDF(M|e) ) TDF Ext M|e hc HILL entropy pseudorandom
Outline of Security Proof Hardcore function Robust hardcore function Indistinguishability Semantic Security m c Enc Ext PK TDF • Hardcore function: hc(M)is pseudorandom given TDF(M) • Cond. Comp Entropy: hc(M|e) high computationalentropy for e, Pr[e]≥1/4 • Uniform Ext Output:Ext( hc(M|e)) pseudorandom for e, Pr[e]≥1/4 • Robust hc function:Ext(hc(M|e) ) | TDF(M|e) pseudorandom hc
Our Scheme−Enchc If hc is hardcore on M Enchcis secure on M Enc TDF m Ext hc PK