1 / 15

Exercises in Computational Mechanics

Exercises in Computational Mechanics. C.7 Finite Element Programming May 17, 2011. Objectives. Improvement of the basic FEM program of Kikuchi's book To make a FE mesh generation program To visualize results using " gnuplot " To consider inhomogeneous Dirichlet B.C.

brent
Download Presentation

Exercises in Computational Mechanics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Exercises in Computational Mechanics C.7 Finite Element Programming May 17, 2011

  2. Objectives • Improvement of the basic FEM program of Kikuchi's book • To make a FE mesh generation program • To visualize results using "gnuplot" • To consider inhomogeneous Dirichlet B.C. • To consider inhomogeneous Neumann B.C. B.C.: Boundary Conditions

  3. Mesh generation program for example 7-5 (1/2) - Use the linear triangular element - Divide one edge into m pieces (0, 1) (1, 1) ..... ..... ..... ..... j Number of nodes:(m+1) * (m+1) Number of elements:m * m * 2 ..... ..... ..... ..... Coordinates of nodes ..... ..... ..... ..... ..... ..... y i ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... (0, 0) (1, 0) Node connectivity of elements x n(i+1)(j+1) ni(j+1) eij+1 eij nij n(i+1)j

  4. Mesh generation program for example 7.5 (2/2) G3 Boundary conditions for ex. 7-5 (p.109) (0, 1) (1, 1) ..... ..... G4 G1 ..... ..... Number of B.C.: 4 * m ..... ..... Node list: i +1 ,i=0,...,m i*(m+1) +1 ,i=1,...,m-1 i*(m+1)+m +1 ,i=1,...,m-1 m*(m+1)+i +1 ,i=0,...,m G1 ..... ..... G2 G2 ..... ..... G3 ..... ..... ..... ..... G4 y ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... (0, 0) (1, 0) Download: http://www.s.kyushu-u.ac.jp/~z6om05in/mkdata_e7-5.c Compiling: $ gcc -o mkdata_e7-5 mkdata_e7-5.c Usage: $ ./mkdata_e7-5 m > input.dat (m > 0) x

  5. Improvement of the basic program for using "gnuplot" (1/2) void output4gnuplot(double fm[],double x[], double y[],intnnode) { int m, j; FILE *fp; m = sqrt(nnode); fp = fopen("output.dat", "w"); for (j = 0; j < nnode; j++) { fprintf(fp, "%e %e %e\n", x[j], y[j], fm[j]); if ((j+1)%m == 0) fprintf(fp, "\n"); } fclose(fp); } Download improved program: http://www.s.kyushu-u.ac.jp/~z6om05in/full_FEM.c Compiling: $ gcc -o full_FEMfull_FEM.c -lm Usage: $ ./full_FEM < input.dat

  6. Visualization using "gnuplot" (2/2) $ ./mkdata_e7-5 5 > input.dat $ ./full_FEM < input.dat $ ls input.dat output.dat $ gnuplot gnuplot> set contour gnuplot> splot "output.dat" u 1:2:3 w l (0, 1) (1, 1) y x (0, 0) (1, 0)

  7. Exercise Example 7.6 (p.112) (0, 1) (1, 1) Solving quarter model - G1 is homogeneous Dirichlet B.C. - G2 is homogeneous Neumann B.C. G2 ... (1) Improve "mkdata_e7-5" - making B.C. part (2) Solve a quarter model using "full_FEM" ... ... ... G1 G2 ... (0, 0) (1, 0) G1 y x

  8. A boundary value problem Consider a boundary value problem,

  9. Inhomogeneous Dirichlet boundary conditionsin the input data Boundary conditions in the input data - given as discretized data The basic program - considers homogeneous B.C. only, - requires the node list on Dirichlet boundaries, and - sets the other boundary the homogeneous Neumann boundary. To consider inhomogeneous Dirichlet B.C., - Node numbers and values must be specified in the input data. nbc ibc[1] ibc[2] ibc[3] ... ibc[nbc] nbc ibc[1] vbc[1] ibc[2] vbc[2] ibc[3] vbc[3] ... ibc[nbc] vbc[nbc]

  10. How to consider Inhomogeneous Dirichlet B.C. In Chapter 4 (p.49) - Deletion BC columns/rows from the matrix and the vector Difficult to program!

  11. Sample code for considering inhomogeneous Dirichlet B.C. for (i=0;i<nnode;i++) w[i] = 0.0; for (i=0;i<nbc;i++) w[ibc[i]-1] = - vbc[i]; for (i=0;i<nnode;i++) { for (j=0;j<nnode;j++) fm[i] += am[i][j] * w[j]; } for(i=0;i<nbc;i++) { ii=ibc[i]-1; fm[ii]=vbc[i]; for(j=0;j<nnode;j++) { am[ii][j]=0.0; am[j][ii]=0.0; } am[ii][ii]=1.0; } Download improved program: http://www.s.kyushu-u.ac.jp/~z6om05in/mkdata_p7-1.c http://www.s.kyushu-u.ac.jp/~z6om05in/full_FEM_p7-1.c Compiling: $ gcc -o mkdata_p7-1 mkdata_p7-1.c -lm $ gcc -o full_FEM_p7-1 full_FEM_p7-1.c -lm Usage: $ ./mkdata_p7-1 5 > input.dat $ ./full_FEM_p7-1 < input.dat

  12. Exercise 7.1 (p.119) (1, 1) (0, 1) y x (0, 0) (1, 0)

  13. Inhomogeneous Neumann boundary conditionsin the input data • To consider inhomogeneous Neumann B.C., • Node numbers, local edge numbers and values must be specified in the input data. ndbc idbc[1] vdbc[1] idbc[2] vdbc[2] idbc[3] vdbc[3] ... idbc[ndbc] vdbc[ndbc] nnbc inbc1[1] inbc2[1] vnbc[1] inbc1[2] inbc2[2] vnbc[2] inbc1[3] inbc2[3] vnbc[3] ... inbc1[nnbc] inbc2[nnbc] vnbc[nnbc] li e

  14. Inhomogeneous Neumann B.C. in the program li e Download improved program: http://www.s.kyushu-u.ac.jp/~z6om05in/mkdata_p7-1e.c http://www.s.kyushu-u.ac.jp/~z6om05in/full_FEM_p7-1e.c Compiling: $ gcc -o mkdata_p7-1e mkdata_p7-1e.c -lm $ gcc -o full_FEM_p7-1e full_FEM_p7-1e.c -lm Usage: $ ./mkdata_p7-1e 5 > input.dat $ ./full_FEM_p7-1e < input.dat

  15. Exercise 7.1e (1, 1) (0, 1) y x (0, 0) (1, 0)

More Related