70 likes | 308 Views
Uma resolução do problema do camelo e das bananas. Em primeiro lugar vamos optimizar o número de paragens a realizar de modo a economizar o número de bananas consumidas durante o percurso.
E N D
Uma resolução do problema do camelo e das bananas • Em primeiro lugar vamos optimizar o número de paragens a realizar de modo a economizar o número de bananas consumidas durante o percurso. • Se o camelo não efectuar paragens no percurso, isto é, pega em 1000 bananas e realiza todo o percurso, é óbvio que as consome durante a viagem, chegando ao ponto B sem bananas. • Se efectuar apenas uma paragem, esta terá de ocorrer antes do quilómetro 500 de modo a ter bananas suficientes para voltar ao ponto de partida e transportar mais bananas. Como a restante parte do percurso é superior a 500 km, então o número de bananas que conseguirá colocar no ponto B será sempre inferior a 500. • Vamos, então, analisar o caso em que o camelo efectua duas paragens ao longo do percurso.
1ª etapa 2ª etapa 3ª etapa A B 1º stop 2º stop • Será: • Uma vez que o camelo consegue transportar no máximo 1000 bananas às costas, podemos modificar os objectivos do problema e pensar apenas numa parte dele. Isto é, se o camelo conseguir juntar 1000 bananas no 2º ponto de paragem, pode prosseguir até ao final sem voltar a parar (porque já não tem razões para voltar atrás). • Então, vamos começar com as 2000 bananas restantes e procurar chegar o mais longe possível com elas.
bananas viagens 1000 5 x 1 • Uma vez que o camelo em cada viagem pode transportar até 1000 bananas, na primeira etapa o camelo tem que voltar atrás 2 vezes para conseguir transportar as 2000 que sobram para o ponto seguinte. Ou seja, tem que efectuar 5 viagens entre o ponto A e o 1º ponto de paragem (três de ida e duas de volta). • Na primeira viagem (1) leva 1000 bananas e deixa as que puder no 1º stop. Volta atrás (2) para buscar outras 1000 e vai de novo (3) deixar as que puder no 1º stop. Volta mais uma vez atrás (4) para buscar as últimas 1000 bananas e segue para no 1º stop (5) para então prosseguir no percurso. • Para que a distância até ao 1º stop seja a maior possível, interessa consumir as 1000 bananas durante as 5 viagens entre o ponto A e 1º stop. Juntará assim 2000 bananas no 1º stop. • Recorrendo à proporcionalidade directa facilmente se obtém a resposta para comprimento da primeira etapa. • Logo, durante a primeira viagem o ideal é consumir 200 bananas, ou seja, parar no quilómetro 200. X= 1000:5 = 200 bananas 1ª Etapa A 1º stop 200 km
bananas viagens 1000 3 x 1 2ª Etapa 1º stop 2º stop 533 KM 200 KM • Dispondo ainda de 2000 bananas, e tendo em conta que quando restarem 1000 bananas o camelo pode prosseguir a viagem até ao ponto B, podemos concluir analogamente que interessa consumir 1000 bananas entre o 1º stop e o 2º stop. • Uma vez que são necessárias apenas três viagens para transportar as 2000 bananas para o 2º stop, recorrendo à proporcionalidade directa facilmente se obtém a resposta para o comprimento da segunda etapa. • Logo, durante a viagem da segunda etapa (1º stop – 2º stop) o ideal é consumir 333 bananas, ou seja, percorrer 333 quilómetros. • O 2º stop será no quilometro 200+333= 533 . X= 1000:3 = 333 bananas NOTA: Foi efectuada uma divisão inteira por razões lógicas.
Solução • Como no 2º stop juntou 1001 bananas (devido à divisão inteira de 1000 por 3), há duas soluções possíveis: • Se o camelo come a banana antes de prosseguir com a viagem, então consegue transportar as 1000 bananas restantes às costas, chegando ao ponto B com 534 bananas (consome 466 bananas durante o percurso). • Se o camelo come a banana durante a viagem tem de deixar uma banana no 2º stop uma vez que a carga máxima é de 1000 bananas, logo, chega ao final com menos uma banana que no caso anterior, isto é, 533 bananas (consome 466 durante o percurso).
Solução • Como no 2º stop juntou 1001 bananas (devido à divisão inteira de 1000 por 3), há duas soluções possíveis: • Se o camelo come a banana antes de prosseguir com a viagem, então consegue transportar as 1000 bananas restantes às costas, chegando ao ponto B com 534 bananas (consome 466 bananas durante o percurso). • Se o camelo come a banana durante a viagem tem de deixar uma banana no 2º stop uma vez que a carga máxima é de 1000 bananas, logo, chega ao final com menos uma banana que no caso anterior, isto é, 533 bananas (consome 466 durante o percurso).
3ª Etapa +1 +1 2º stop B 533 KM 1000 KM - 533 bananas Legenda : - 1000 bananas +1 2º stop B 533 KM 1000 KM