280 likes | 434 Views
Wstęp do teorii gier. Indywidualna vs interaktywna teoria decyzji. Gry o sumie zerowej. W grach o sumie zerowej wypłaty sumują się do zera w każdym stanie Diagram przesunięć. Gry o sumie zerowej. Minimax = maximin = wartość gry Gra może mieć wiele punktów siodłowych.
E N D
Gry o sumie zerowej • W grach o sumie zerowej wypłaty sumują się do zera w każdym stanie • Diagram przesunięć
Gry o sumie zerowej • Minimax = maximin = wartość gry • Gra może mieć wiele punktów siodłowych
Gry o sumie zerowej • Albo nie mieć ich wcale • Jaka jest wartość gry w takim przypadku? • Jeśli gra nie ma punktu siodłowego, trzeba wprowadzić strategie mieszane
Gry o sumie zerowej • Jeśli jest więcej niż dwie strategie dla jednego gracza i gra nie ma punktu siodłowego, nie wiadomo, które strategie będą częścią optymalnej strategii mieszanej • Niech mieszana strategia Kolumny będzie (x,1-x) • Wypłata Wiersza dla każdej jego strategii
Gry o sumie zerowej • Column will try to choose x to minimizetheupperenvelope
Gry o sumie zerowej • Przekształcamy w problem programowania liniowego
Studium przypadku: Teoria gier vs indywidualna teoria decyzji w warunkach ryzyka oraz niepewności • W latach pięćdziesiątych, Davenport studiował zachowanie rybaków w małej wiosce na Jamajce.
Twenty-six fishing crews in sailing, dugout canoes fish this area [fishing grounds extend outward from shore about 22 miles] by setting fish pots, which are drawn and reset, weather and sea permitting, on three regular fishing days each week … The fishing grounds are divided into inside and outside banks. The inside banks lie from 5-15 miles offshore, while the outside banks all lie beyond … Because of special underwater contours and the location of one prominent headland, very strong currents set across the outside banks at frequent intervals … These currents are not related in any apparent way to weather and sea conditions of the local region. The inside banks are almost fully protected from the currents. [Davenport 1960]
Strategie • 26 drewnianych kanoe. Kapitanowie tych kanoe mają do dyspozycji 3 strategie połowu: • IN – ustawić wszystkie kosze w zatokach • OUT – ustawić wszystkie kosze na wodach odsłoniętych • IN-OUT– część koszy w zatokach część na zewnątrz
Zalety i wady połowu na otwartym morzu WADY • Dopłynięcie do łowiska zabiera więcej czasu, więc można postawić mniej koszy • Jak prąd jest aktywny, powoduje duże zagrożenie dla koszy ustawionych na otwartym morzu • Znosi znaczniki • Uszkadza kosze podczas przesuwania • Zmiany temperatury wody mogą zabijać ryby wewnątrz koszy ZALETY • Ryby na łowiskach zewnętrznych są dużo lepszej jakości • Jeśli jest ich dosyć, mogą wyprzeć ryby z łowisk wewnętrznych zupełnie z rynku • Rybołóstwo na łowiskach zewnętrznych wymaga dużo lepszych kanoe • Zazwyczaj ci, którzy łowią na łowiskach wewnętrznych kupują używane kanoe od tych, którzy łowią na łowiskach zewnętrznych • Posiadanie lepszych kanoe daje dużo prestiżu, ponieważ ich kapitanowie dominują w corocznych wyścigach kanoe
Dane • Davenport zebrał dane dotyczące średnich dziennych zysków w zależności od strategii połowu oraz obecności/nieobecności prądu
1 Gra o sumie zerowej?? • Nie ma punktu siodłowego • Strategia mieszana: • Załóżmy, że „złośliwy” prąd „stosuje” strategię „Płynę” z prawdopodobieństwem p1, „Nie płynę” z prawdopodobieństwem p2 • Strategia rybaków: IN z prawd. q1, OUT z prawd. q2, IN-OUT z prawd. q3 • Dla każdego p rybacy wybierają strategię (q) z maksymalną wypłatą • A „złośliwy” prąd wybiera p tak, aby rybacy zarobili jak najmniej
Rozwiązanie graficzne problemu prądu Solution: p=0.31 Optymalna strategia mieszana prądu
Podobnie w przypadku odwrotnym: • Dla każdej strategii rybaków q, prąd „wybiera” taką, dla której rybacy zarobią najmniej: • Rybacy natomiast będą się starali tak wybrać q, aby zmaksymalizować swoją wypłatę
Maximin iminimax w Excel Solver Optymalna strategia rybaków Wartość gry Optymalna strategia prądu
Prognoza i obserwacja Gra o sumie zerowej Obserwacja Nikt nie ryzykuje zastawiania koszy na zewnętrznych łowiskach Strategia rybaków: 69% IN, 31% IN-OUT [Oczekiwana wypłata: 13.38] Prąd: 25% PŁYNIE, 75% NIE PŁYNIE • Nikt nie ryzykuje zastawiania koszy na zewnętrznych łowiskach • Optymalna strategia rybaków: 67% IN, 33% IN-OUT [Oczekiwana wypłata: 13.31] • Optymalna strategia prądu: 31% PŁYNIE, 69% NIE PŁYNIE Konkluzja Davenporta: rybacy są dobrze przystosowani Odkrycie Davenporta przez parę lat nie zostało zakwestionowane aż do momentu …
Prąd nie jest złośliwy • Kozelka 1969 oraz Read, Read 1970 zauważyli, że • Prąd nie dostosowuje swojej „strategii” do działań rybaków • Dlatego rybacy powinni zastosować zasadę oczekiwanych zysków • Oczekiwane zyski rybaków • IN: 0.25 x 17.3 + 0.75 x 11.5 = 12.95 • OUT: 0.25 x (-4.4) + 0.75 x 20.6 = 14.35 • IN-OUT: 0.25 x 5.2 + 0.75 x 17.0 = 14.05 • Czyli wszyscy rybacy powinni łowić na zewnętrznych łowiskach • Może jednak nie są zbyt dobrze przystosowani
Prąd może być jednak złośliwy • Prąd nie rozumuje, ale łowienie na otwartym morzu jest bardzo ryzykowne. • Nawet jeśli prąd płynie ŚREDNIO 25% czasu, to jednak może płynąć częściej w danym roku. • Załóżmy, że w jednym roku prąd płynie 35% czasu. Oczekiwana wypłata: • IN: 0.35 x 17.3 + 0.65 x 11.5 = 13.53 • OUT: 0.35 x (-4.4) + 0.65 x 11.5 = 11.85 • IN-OUT: 0.35 x 5.2 + 0.65 x 17.0 = 12.87. • Poprzez potraktowanie prądu jak złośliwego gracza rybacy GWARANTUJĄ sobie wypłatę przynajmniej 13.31, niezależnie od tego, jak często płynie prąd • Rybacy płacą $1.05 składki ubezpieczeniowej