330 likes | 504 Views
Hadron Physics with Heavy quarks. Su Houng Lee 1. Hadrons with one heavy quark 2. Multiquarks with one heavy quark 3. Quarkonium Arguments based on two point function can be generalized to higher point function. QCD Chiral symmetry breaking Confinement. Phenomenology
E N D
Hadron Physics with Heavy quarks Su Houng Lee 1. Hadrons with one heavy quark 2. Multiquarks with one heavy quark 3. Quarkonium Arguments based on two point function can be generalized to higher point function
QCD Chiral symmetry breaking Confinement Phenomenology One heavy quark Two heavy quark Heavy quark
Heavy quark propagator Perturbativetreatment are possible because
One Heavy quark and one Light antiquark Perturbative treatment are possible when which breaks down at x=0 due to light quark propagator
Contribution from light quark condensate converges for large
Chiral order parameters D(2400) D(1870)
Direct observation of chiral symmetry restoration in medium 0+ D(2400) Belle G > 200 MeV D p Hayashigaki (00) 0- D(1870) Weise, Morath, Lee (99) • QCD sum rule approach: Hayashigaki, Weise, Morath, Lee Generalization to other channels: Kampfer et a. (10), Mishra et.al., Z. Wang
near mass shell Heavy quark symmetry D* D D0 D0 but no convergence model approach
Bs1(5830) Bs(58xx)? B(57xx)? B1(5721) xxx 345 xxx? 396 Bs*(5415) Bs(5366) B*(5325) B(5279) 46 46 Qqquark system in vacuum and medium: Chiral symmetry Ds1(2460) D1(2420) D(2400) 2318 ? Ds(2317) 348 413 349 530 448 ? D*(2112) D*(2007) Ds(1968) D(1870) 144 137 0- 0+ 1- 1+ 0- 0+ 1- 1+
2. Multiquarks with one heavy quark Some introduction with diquarks Possible multiquark states
Recent highlights on Multi-quark hadrons –heavy quark sector Babar: DSJ(2317) 0+ Puzzle in Constituent Quark Model(2400) • D0 K+ (2358) threshold effect • Chiral partner of (0-1-) • Tetraquark Belle molecule ? X(3872) G<10 MeV, Y(4260), Z(4430) G<50 y’p Z(4051),Z(4248) cc1p Zb(10610), Zb(10650) Up
Normal meson, Tetraquark and Molecule Navara, Nielsen, SHLee Phys Rept (11) u u u u u u d d u d
Color spin interaction (De Rujula, Georgi, Glashow..) • Diquark vs. quark-antiquarkconfigurations q2 q4 q1 q2 • Diquark attracation vs quark-antiquark q1 q3 q2
Recently observed states with hidden heavy quark Yasui • Most probably molecular state NOT tetraquark q1 q3 c c q1 c q1 q3 q1 q3 c q3 c c c c p p p D* D* D D1 X(3872) Z(4430)
Multiquark configuration –Yasui, Ko, Liu, Lee (08,09) • Diquark attracation vs quark-antiquark q1 q3 q3 q2 • diquark picture: Yasui, Ko, Liu, Lee,.. (EJP08,EJP09)
Tetra-quark • A picture of Lc(K.Kim, D. Jido, SHL) u d c • A Tetraquark 0- 1- 1+ c u d c c u c d - Binding against decay = - 79.3 MeV
Di-baryon (conf 1) – (qq)(qq)(qq) H di-baryon u d u d u d u s 0+ s s d s
Di-baryon (conf 2) – (qq)(qq)(qQ) Hc di-baryon P Xc 0+ s u d u u d u s u c u c Hcdi-baryon
System with heavy quark anti-quark Perturbative treatment are possible when
= Subtlety for bound states Applequist, Dine, Muzinich (78), Peskin (79), Basis for pNRQCD ........ Separation scale
Mass shift: QCD 2nd order Stark Effect : Peskin 79 e > Lqcd • OPE for bound state: m infinity Separation scale For small T modify matrix element • Attractive for ground state
G0 <a/p B2>T <a/p E2>T G2 Summary of analysis of Stark effect+ QCD sum rule (Morita-Lee) • Due to the sudden change of condensate near Tc • Abrupt changes for mass and width near Tc
Operators in at finite density and hadronic phase • Linear density approximation • Condensate at finite density • At r = 5 xrn.m.
QCD sum rule for Quarkonia in medium • QCD sum rule for Quarkonia at nuclear matter: • Klingl, Kim, SHL,Weise (99), Hayashigai (99) • Contribution from complete dim 6 operators: Kim SHL (01) • mass shift at nuclear matter: -7 MeV (dim 4) • -4 MeV (dim4+ dim6) • QCD sum rule + MEM at finite temperature: Gubler, Oka, Morita • looking forward to further work
<E2>, <B2> vs confinement potential • Local vs non local behavior Time W(S-T)= exp(-s ST) OPE for Wilson lines: Shifman NPB73 (80) T S W(S-T) = 1- <a/p E2> (ST)2 +.. W(S-S) = 1- <a/p B2> (SS)2 +.. Space W(S-S)= exp(-s SS) Space • Behavior at T>Tc W(SS)= exp(-s SS) <a/p B2>T W(ST)= exp(-g(1/S)T) <a/p E2>T
Behavior near Tc 2+1 HotQCD (2012) SU(3) Gauge Boyd (1996)
Early work on J/y at finite T (Hashimoto, Miyamura, Hirose, Kanki) s String Tension: QCD order parameter T/Tc
Analytic approaches Chiral symmetry breaking Confinement JPARC One heavy quark Two heavy quark Heavy quark Lattice calculation
Summary • Hadrons with one heavy quark (D, …) in medium can give new insight into chiral symmetry restoration • a) nuclear target ? Heavy ion at JPAR • b) Lattice calculation 2. Molecules are interesting. Flavor exotic multiquark states will exist in the heavy sector a) From B decay b) From JPARC 3. Quarkonium in medium will give new insights into confinement problem
Multiquark configuration –Yasui, Ko, Liu, Lee (08,09) Q+ (Jaffe Wilczek) in a naïve quark model L=1 Q+ P K u d u d s u d d 1/2+ u s L2 contribution • - 500 MeV in Five body quark model by Hiyama, Hosaka et al (06)