1 / 48

Search for Chiral Symmetry Restoration in QCD Matter

Search for Chiral Symmetry Restoration in QCD Matter. Ralf Rapp Cyclotron Institute + Dept of Phys & Astro Texas A&M University College Station, USA HIC for FAIR Nuclear Physics Colloquium Institute for Theoretical Physics (Frankfurt, Germany) 22.10.15.

bveilleux
Download Presentation

Search for Chiral Symmetry Restoration in QCD Matter

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Search for Chiral Symmetry Restoration in QCD Matter Ralf Rapp Cyclotron Institute + Dept of Phys & Astro Texas A&M University College Station, USA HIC for FAIR Nuclear Physics Colloquium Institute for Theoretical Physics (Frankfurt, Germany) 22.10.15

  2. 1.) Introduction:Probing QCD Matter Big Bang Compact Stellar Objects • Bulk Properties: Equation of State, Transport Coefficients • Microscopic Properties: Degrees of Freedom, Spectral Functions • Phase Transitions: Condensate Structure

  3. 1.2 Dileptons in Heavy-Ion Collisions e+ e- qq r A + A NN coll. QGP Hadron Matter Freeze-Out Emission Sources: • Drell-Yan: NN→e+e-X • Thermal radiation - Quark-Gluon Plasma: qq → e+e- - Hadron Matter: p +p - → r → e+e-, … - • final-state decays: p0,h → ge+e-

  4. 1.3 EM Spectral Function Probing the Fireball • Thermal Dilepton Rate • unique direct access to in-medium spectral function rem(M,q;mB,T) e+e-→ hadrons r - qq rem / M2 e+ e- e+ e- • Hadrons:rem ~ ImDr,w,f - change in degrees of freedom? - restoration of chiral symmetry? • qq Continuum: rem/M2 ~ const (1+ O[T2/M2]) - temperature? M [GeV] -

  5. Outline 1.) Introduction 2.) Spontaneous Chiral Symmetry Breaking  QCD Vacuum + Excitations 3.) Axial/Vector Mesons in Medium  Vacuum + Many-Body Theory  QCD + Weinberg Sumrules  cEFT + Mechanisms of Chiral Restoration 4.) Dilepton Phenomenology  From SIS to RHIC 5.) Conclusions

  6. qR qL > > > > - - qL qR 2.1 Chiral Symmetry + QCD Vacuum 2-flavor + chiral (left/right) invariant “Higgs” Mechanism in Strong Interactions: • qqattraction  condensate fills QCD vacuum! Spontaneous Chiral Symmetry Breaking - Consequences: • effective quark mass: ↔ mass generation!? • near-massless Goldstone bosons p0,± • “chiral partners” split: DM ≈ 0.5GeV JP=0±1± 1/2±

  7. 2.2 Mass Gap + Chiral Partners Axial-/Vector Correlators Constituent Quark Mass “Data”: lattice [Bowman et al ‘02] Theory: Instanton Model [Diakonov+Petrov; Shuryak ‘85] pQCD cont. r V,A / s • Spectral shape matters for chiral symmetry breaking E.g. ● Chiral breaking:|q2| ≤ 2 GeV2

  8. Chiral Restoration 2.3 Chiral Symmetry and Dileptons Chiral Condensate [Fodor et al ’10] Vacuum rV T [MeV] rA

  9. Outline 1.) Introduction 2.) Spontaneous Chiral Symmetry Breaking  QCD Vacuum + Excitations 3.) Axial/Vector Mesons in Medium  Vacuum + Many-Body Theory  QCD + Weinberg Sumrules  cEFT + Mechanisms of Chiral Restoration 4.) Dilepton Phenomenology  From SIS to RHIC 5.) Conclusions

  10. |Fp|2 dpp 3.1 r Meson in Vacuum Introducer, a1as gauge bosons into chiral p Lagrangian p p r r propagator: • 3 parameters: mr(0), g, Lr • p EM formfactor • pp phase shift

  11. 3.2 r Meson in Hot + Dense Matter r Sp > Sp > Sp Interactions with hadrons from heat bath  In-Medium r-Propagator r Dr (M,q;mB,T) = [M2- mr2-Srpp -SrB -SrM ]-1 • In-Medium Pion Cloud Srpp = + [Chanfray et al, Herrmann et al, Urban et al, Weise et al, Oset et al, …] R=D, N(1520), a1, K1,... r • Direct r-Hadron Scattering SrB,M = [Haglin, Friman et al, RR et al, Post et al, …] h=N, p, K, … • Theoretical Control: - symmetries (gauge, chiral) - empirical constraints (decays R→r+h, scattering data gN/gA, pN→rN…)

  12. Hot Meson Matter rB/r0 0 0.1 0.7 2.6 [RR+Gale ’99] 3.2.2 r-Meson Spectral Function in Medium Hot + Dense Matter mB =330MeV [RR+Wambach ’99] • r-meson “melts” in hot/dense matter • largely driven by baryon density (rB)

  13. 3.3 QCD + Weinberg Sum Rules [Weinberg ’67, Das et al ’67] r a1 √s [GeV] [Weinberg ’67, Das et al ’67; Kapusta+Shuryak ‘94] • accurately satisfied in vacuum • In-medium input: - condensates: hadron reso. gas / lattice-QCD - in-medium r spectral function Solution for axialvector spectral function? T [GeV]

  14. 3.3.2 QCD + Weinberg Sum Rules in Medium • Quantitatively compatible (< 1%) with (approach to) chiral restoration • Chiral mass spliting burns off [Hohler +RR ‘13]

  15. 3.4 Massive Yang-Mills Approach in Vacuum • Gauge r + a1 into chiral pion lagrangian: • problems with vacuum phenomenology → global gauge? • Improvement - full rpropagator in a1 selfenergy - vertex corrections to preserve PCAC: [Urban et al ‘02, Rischke et al ‘10] [Hohler +RR ‘14] • enables fit to t-decay data • local-gauge approach viable • starting point for evaluating chiral restoration in medium

  16. 3.4.2 Massive Yang-Mills in Hot Pion Gas Temperature progression of vector + axialvector spectral functions • supports “burning” of chiral-mass splitting as mechanism for chiral restoration [as in sum rule analysis] [Hohler+RR ‘15]

  17. 3.5 Lattice-QCD Results for N(940)-N*(1535) Euclidean Correlator Ratios Exponential Mass Extraction “N*(1535)” “Nucleon” • also indicates MN*(T) → MN (T) ≈ MNvac [Aarts et al ‘15]

  18. Outline 1.) Introduction 2.) Spontaneous Chiral Symmetry Breaking  QCD Vacuum + Excitations 3.) Axial/Vector Mesons in Medium  Vacuum + Many-Body Theory  QCD + Weinberg Sumrules  cEFT + Mechanisms of Chiral Restoration 4.) Dilepton Phenomenology  From SIS to RHIC 5.) Conclusions

  19. 4.1 Dilepton Rates: Hadronic vs. Partonic rem(M,q;mB,T) - [qq→ee] • resonance melting hadronic rate approaches QGP rate • suggestive for deconfinement and chiral restoration • robust modeling in heavy-ion collisions

  20. e+ e- r 4.2 EM Spectra in Heavy-Ion Collisions • Evolve rates over fireball: • Space-time evolution: - lattice EoS - require fit to final hadron spectra Au-Au (200GeV) - qq [M.He et al ’12]

  21. 4.3 Precision Dileptons at SPS (17.3 GeV) Invariant-Mass Excess Spectrum <Nch>=120 [van Hees+RR ’13] • Low mass: radiation from T ~ Tpcc ~ 150MeV -spectrometer • Intermediate mass: T ~ 200MeV - thermometer • Total yield: fireball lifetime tFB =7 ± 1fm/c - chronometer See also [Dusling et al, Renk et al, Alam et al, Bratkovskaya et al, …]

  22. 4.4 Low-Mass Dileptons in Heavy-Ion Collisions <Nch>=120 • Robust understanding across QCD phase diagram: QGP + hadronic radiation with meltingr resonance

  23. 4.5 News from PHENIX [PHENIX ‘15] • “Anomalous” low-mass enhancement [PHENIX ’08] not confirmed • Now agrees with STAR data and theoretical predictions

  24. 4.6 Dilepton Excitation Functions Low-Mass Excess Intermediate-Mass Slope • unique temperature measurement • track first order transition? • tracks fireball lifetime well! • tool for critical point search? • √s ≤ 10 GeVvery promising regime for dileptons

  25. 5.) Conclusions • Dilepton radiation in HICs probes in-medium vector spectral function - fate of hadrons, chiral restoration - robust theoretical understanding of data via melting r resonance • Mechanism of chiral restoration - mounting evidence for “burning off” DMc: QCD+Weinberg sum rules, cEFT, lattice QCD • Future - low-mass spec fct at mB ~0(RHIC/LHC) + mB ≥400MeV (FAIR, SPS) - excitation fct. of lifetime + temperature(BES-II, FAIR, SPS, NICA) - origin of photon-/dilepton-v2 JP=0±1± 1/2±

  26. 4.2.2 Evaluation of Chiral Sum Rules in Vacuum • pion decay constants • chiral quark condensates • vector-axialvector splitting clean observable of spontaneous chiral symmetry breaking • promising starting point to search for chiral restoration

  27. 4.1.2 Sensitivity to Spectral Function In-Medium r-Meson Width • avg. Gr(T~150MeV)~370MeVGr (T~Tc) ≈ 600 MeV → mr • driven by (anti-) baryons Mmm [GeV]

  28. 3.3 Low-Mass e+e- Excitation Function: 20-200 GeV [P. Huck et al. (STAR), QM14] • compatible with predictions from melting r meson • “universal” source around Tpc

  29. 3.2.2 Dimuon pt-Spectra + Slopes: Barometer Effective Slopes Teff • slopes originally too soft • need stronger fireball acceleration, e.g. a┴ = 0.085/fm → 0.1/fm • insensitive to Tc = 160-190 MeV

  30. 3.3.1 Photon Puzzle!? Spectra Elliptic Flow • Teffexcess = (220±25) MeV • flow blue-shift: Teff ~ T √(1+b)/(1-b) , b~0.3: T ~ 220/1.35 ~160 MeV • small slope + large v2 suggest main emission around Tpc • similar indications at LHC [ALICE]

  31. 4.2 Low-Mass Dileptons: Chronometer In-In Nch>30 • first “explicit” measurement of interacting-fireball lifetime: tFB≈ (7±1) fm/c

  32. 3.4 Low-Mass e+e- at HADES (2.6 GeV) [Endres,vanHees, Weil+Bleicher, in prep] • Thermal rates folded over coarse-grained UrQMD medium evolution • consistent with baryon-driven medium effects at SPS+RHIC See also [Bratkovskaya et al , Kämpfer et al, Weil et al,…]

  33. 3.2.3 Transverse-Momentum Spectra: Baro-meter Effective Slope Parameters RHIC SPS QGP HG [Deng,Wang, Xu+Zhuang ‘11] • qualitative change from SPS to RHIC: flowing QGP • true temperature “shines” at large mT

  34. 2.2 Chiral Condensate + r-Meson Broadening > Sp effective hadronic theory > - Sp • h = mq h|qq|h > 0 contains quark core + pion cloud = Shcore + Shcloud ~ ++ • matches spectral medium effects: resonances + pion cloud • resonances + chiral mixing drive r-SF toward chiral restoration r - - qq / qq0

  35. 3.2 Vector Correlator in Thermal Lattice QCD • Analyticity: Euclidean Correlator Ratio Spectral Function [Ding et al ‘10] [RR ‘02] • correlator enhancement comparable to lattice QCD • indicates transition from hadronic to partonic degrees of freedom

  36. 4.1 Prospects I: Spectral Shape at mB ~ 0 STAR Excess Dileptons [STAR ‘14] • rather different spectral shapes compatible with data • QGP contribution?

  37. 2.2 Transverse-Momentum Dependence pT -Sliced Mass Spectra mT -Slopes x100 • spectral shape as function of pair-pT • entangled with transverse flow (barometer)

  38. 2.4 Low-Mass e+e- at HADES (2.63 GeV) [Endres,vanHees+Bleicher, in prep] • Thermal rates folded over coarse-grained UrQMD medium evolution • good description in (M,qt) • data well beyond kinematic limit (0.75GeV)!

  39. 3.3.2 Effective Slopes of Thermal Photons Thermal Fireball Viscous Hydro [van Hees,Gale+RR ’11] [S.Chen et al ‘13] • thermal slope can only arise from T ≤ Tc(constrained by • closely confirmed by hydro hadron data) • exotic mechanisms: glasma BE? Magnetic fields+ UA(1)? [Liao at al ’12, Skokov et al ’12, F. Liu ’13,…]

  40. 3.3.3 Direct Photons at LHC Spectra Elliptic Flow ● ALICE [van Hees et al in prep] • similar to RHIC results • non-perturbative photon emission rates around Tpc?

  41. 5.2 Chiral Restoration Window at LHC • low-mass spectral shape in chiral restoration window: ~60% of thermal low-mass yield in “chiral transition region” (T=125-180MeV) • enrich with (low-) pt cuts

  42. 4.4 Elliptic Flow of Dileptons at RHIC • maximum structure due to late r decays [He et al ‘12] [Chatterjee et al ‘07, Zhuang et al ‘09]

  43. 3.3.2 Fireball vs. Viscous Hydro Evolution [van Hees, Gale+RR ’11] [S.Chen et al ‘13] • very similar!

  44. 2.3 Dilepton Rates vs. Exp.: NA60 “Spectrometer” • Evolve rates over fireball expansion: Acc.-correctedm+m- Excess Spectra In-In(17.3GeV) [NA60 ‘09] [van Hees+RR ’08] Mmm [GeV] • invariant-mass spectrum directly reflects thermal emission rate!

  45. 4.2 Low-Mass e+e- at RHIC: PHENIX vs. STAR • PHENIX enhancement (central!) not accounted for by theory • STAR data ok with theory (charm?!)

  46. 4.3.2 Revisit Ingredients Emission Rates Fireball Evolution • multi-strange hadrons at “Tc” • v2bulkfully built up at hadronization • chemical potentials for p, K, … • Hadron - QGP continuity! • conservative estimates… [Turbide et al ’04] [van Hees et al ’11]

  47. 4.7.2 Light Vector Mesons at RHIC + LHC • baryon effects important even at rB,tot= 0 : sensitive to rBtot= rB + rB (r-N and r-N interactions identical) • w also melts, f more robust ↔ OZI - -

  48. 4.1 Nuclear Photoproduction: rMeson in Cold Matter g + A → e+e- X • extracted “in-med” r-width Gr≈ 220 MeV e+ e- Eg≈1.5-3 GeV g r [CLAS+GiBUU ‘08] • Microscopic Approach: + in-med. r spectral fct. product. amplitude full calculation fix density 0.4r0 Fe-Ti r g N [Riek et al ’08, ‘10] M[GeV] • r-broadening reduced at high 3-momentum; need low momentum cut!

More Related