360 likes | 377 Views
This project aims to provide a snapshot of the tail-end of a shower for simulation validation. It involves prototyping a high-fidelity detector for a generic LCD, correcting for leakage and understanding the impact of coil muon reconstruction and eflow fake rate.
E N D
Tail-Catcher/Muon Tracker Prototype Vishnu V. Zutshi for NIU/NICADD
Goals for the TC/Muon System • Provide a reasonable snapshot of the tail-end of the shower for simulation validation • Prototype detector with high-fidelity to what is imagined for a generic LCD correcting for leakage understanding the impact of coil muon reconstruction + eflow fake rate V. Zutshi, ECFA, Durham
Leakage V. Zutshi, ECFA, Durham
Shower Depth Shower depth dependent sampling weights (least squares minimization) are calculated with and without tail-catcher energy. Weights for layers get progressively “frozen”. V. Zutshi, ECFA, Durham
Erec/Egen 50 GeV p V. Zutshi, ECFA, Durham
Single particle E Resolution V. Zutshi, ECFA, Durham
E correlation (with “coil”) V. Zutshi, ECFA, Durham
Multiple Scattering V. Zutshi, ECFA, Durham
50 GeV p± V. Zutshi, ECFA, Durham
HCal Table V. Zutshi, ECFA, Durham
HCal & TCMT V. Zutshi, ECFA, Durham
<90%> Containment V. Zutshi, ECFA, Durham
Rotations V. Zutshi, ECFA, Durham
Design Elements • “Fine” section (8 layers) 2cm thick steel • “Coarse” section (8 layers) 10cm thick steel • 5mm thick, 5cm wide strips • Tyvek/VM2000 wrapping • Alternating x-y orientation • Si-PM photo detection • Common readout with HCal V. Zutshi, ECFA, Durham
Fermi-NICADD Extruder V. Zutshi, ECFA, Durham
Die V. Zutshi, ECFA, Durham
Bulk LY • BC404 3.25 0.22 • BC408 2.70 0.15 • F-NICADD 2.01 0.30 (~66% of BC408) • averaged over 10 samples V. Zutshi, ECFA, Durham
Separation Grooves Provides better rigidity 1 2 3 4 5 Epoxy/paint mixture V. Zutshi, ECFA, Durham
Strips V. Zutshi, ECFA, Durham
X-talk V. Zutshi, ECFA, Durham
Grooving V. Zutshi, ECFA, Durham
Response V. Zutshi, ECFA, Durham
Uniformity (Grooves) V. Zutshi, ECFA, Durham
Uniformity (small holes) V. Zutshi, ECFA, Durham
Longitudinal Scan V. Zutshi, ECFA, Durham
1mm thick steel walls Cassette I LED’s sit here Electronics sit here V. Zutshi, ECFA, Durham
Cassette II V. Zutshi, ECFA, Durham
Cassette III V. Zutshi, ECFA, Durham
LED Stability studies underway V. Zutshi, ECFA, Durham
Absorber and Cart • Good quality steel plates from Fermi scrap available (0.75 and 4 inches thick). • Maximum size for the thicker plates is 1.066m x 1.2m. • Cart being designed with about 10 tonne load capacity. • Will have the capability for forward-backward and left-right motion. V. Zutshi, ECFA, Durham
Quality Control I • Hole Tolerance • Width and thickness measurements • Dopant presence • Attenuation length measurements • Longitudinal and horizontal scans V. Zutshi, ECFA, Durham
Quality Control II V. Zutshi, ECFA, Durham
Quality Control III V. Zutshi, ECFA, Durham
Summary • Strip-fiber R&D essentially done, we are entering construction phase. • All the scintillator required for the device has been produced. • Mechanical prototype cassette assembled. • Hope to have the first fully instrumented layer readout before year-end. V. Zutshi, ECFA, Durham