520 likes | 954 Views
Sebastian B. Schneider, Dominik Baumann Ludwig-Maximilians-Universität München, LMU Prof. Dr. Wolfgang Schnick. High-Pressure Synthesis of Novel (Oxo-)Nitridosilicates, (Oxo-)Nitridophosphates and Related Binary Nitrides
E N D
Sebastian B. Schneider, Dominik Baumann Ludwig-Maximilians-Universität München, LMU Prof. Dr. Wolfgang Schnick High-Pressure Synthesis of Novel (Oxo-)Nitridosilicates, (Oxo-)Nitridophosphates and Related Binary Nitrides 5th Berichtskolloquium of SPP 1236 (2009-2012) Bad Salzschlirf, Hessen, Germany 25.9. – 28.09.2012
Why N-based research? specificchemicalandphysicalproperties - highercondensationdegree - higher CN ofthe N-basedanionsthroughhighercoherence - morecovalentbondsthroughlowerelectronegativity comparedto O-basedcompounds resulting in manifoldareasofscienceandindustry • hard material (cuttingandgrindingtool) • - meltingcrucible • - engineering material • potential phosphors in LEDs (after doping) • fundamental research
Synthesis – devices Multianvil press DACs pmax≈ 20 GPa Tmax≈ 1600 °C
I. Novel Si-(O-)N and P-(O-)N compounds with extraordinary properties Highlights in Nitridosilicate and Nitridophosphate chemistry
Novel (Oxo-)Nitridosilicates – an Overview HP-Ca2Si5N8- A New High-Pressure Nitridosilicate: Synthesis, Structure, Luminescence, and DFT-Calculations Compression Behaviour of Nitridocarbidosilicates M2[Si4N6C] M = Y, Ho, Er - Studied with X-ray Diffraction and ab-initio Calculations A Density Functional Study of the High-Pressure Chemistry of MSiN2 (M = Be, Mg, Ca): Prediction of High-Pressure Phases and Examination of Pressure-Induced Decomposition High-Pressure Phases and Transitions of the Layered Alkaline Earth Nitridosilicates SrSiN2 and BaSiN2 Material Properties and Structural Characterization of M3Si6O12N2:Eu2+ (M = Ba, Sr) – A Comprehensive Study on a Promising Green Phosphor for pc-LEDs BaSi4O6N2 – A Hexacelsian-Type Layered Oxonitridosilicate
Novel (Oxo-)Nitridosilicates More details in tonightspostersession
Novel (Oxo-)Nitridophosphates – an Overview Sr3P6O6N8 – A Highly Condensed Layered Phosphate Phenakite-Type BeP2N4 – a Possible Precursor for a New Hard Spinel-Type Material. Electronic Structure and Physical Properties of the Spinel-Type Phase of BeP2N4 from All-Electron Density Functional Calculations High-Pressure Synthesis, Crystal Structure and Characterization of Zn2PN3 – A New Catena-polynitridophosphate. High-Pressure Synthesis and Structural Investigation of H3P8O8N9: A New Phosphorus(V) Oxonitride Imide with an Interrupted Framework Structure An Unprecedented AB2 Tetrahedra Network Structure Type in a High-Pressure Phaseof Phosphorus Oxonitride PON Crystal Structure of Barium Oxonitridophosphate, Ba3P6O6N8
Why work on Nitridophosphates? Si/O P/N 4 + 6 = 10 valenceelectrons SiO2 16/3 valenceelectrons/atom Networks based on SiO4-tetrahedra 5 + 5 = 10 valenceelectrons PN2- 16/3 valenceelectrons/atom Networks based on PN4-tetrahedra Isosteric P/N and Si/O networks? enhancedbondingcapabilitiesof P/N leadto additional possiblenetworksandprobablyinterestingmaterialsproperties!
Nitridophosphates – Examples Nitridophosphateswith Silicate AnalogousStructures β-Cristobalite: LiPN2, NaPN2 Megacalsilite (≡ K[AlSiO4]): SrP2N4 9 K. Landskron, S. Schmid, W. Schnick, Z. Anorg. Allg. Chem.2001, 627, 2469. F.W. Karau, L. Seyfarth, O. Oeckler, J. Senker, K. Landskron, W. Schnick, Chem. Eur. J.2007, 13, 6841.
Nitridophosphates – Examples Nitridophosphateswith Silicate AnalogousStructures P4N4(NH)4(NH3) – a NitridicClathrate - Cage builtupof PN4-tetrahedra - Cage contains NH3molecule - NH3releasedattemperatures > 565 °C 10 F. Karau, W. Schnick, Angew. Chem.2006, 118, 4617; Angew. Chem. Int. Ed. 2006, 45, 4505.
Nitridophosphates – BeP2N4 WhataboutNitridophosphateswith CN(P) > 4? (Stishovite-like) CN(Si) = 6 - A possiblecandidate: BeP2N4 - Isostructuralandisovalence-electronic toβ-Si3N4 - Transition fromphenakitetospinelstructure type seemslikely - CN(P) = 4 CN(P) = 6 c-Si3N4 HP/HT CN(Si) = 4 11 F.J. Pucher, S.R. Römer, F.W. Karau, W. Schnick, Chem. Eur. J.2010, 16, 7208; W.Y. Ching, S. Aryal, P. Rulis, W. Schnick, Phys. Rev. B2011, 83, 155109-1.
Nitridophosphates – BeP2N4 Synthesis of BeP2N4 5 GPa/1500°C Be3N2 + 2 P3N5 3 BeP2N4 - Isotypicto Be2SiO4 (phenakite) andβ-Si3N4 - Ionicradiiof Si and P aresimilar - Network builtupof PN4- (blue) and BeN4-tetrahedra (orange) 12 F.J. Pucher, S.R. Römer, F.W. Karau, W. Schnick, Chem. Eur. J.2010, 16, 7208.
Nitridophosphates – BeP2N4 Theoretical Studies of BeP2N4 Calculated transition pressure: 24 GPa Potential superhard material 24 GPa ??? 13 F.J. Pucher, S.R. Römer, F.W. Karau, W. Schnick, Chem. Eur. J.2010, 16, 7208; W.Y. Ching, S. Aryal, P. Rulis, W. Schnick, Phys. Rev. B2011, 83, 155109-1.
Whyworkon Oxonitridophosphates? PON SiO2 - ambient conditions: β-Cristobalite - 4.5 GPa, 750 °C: α-Quarz I 20 GPa α-Quarz II - 2.5 GPa, 900 °C: Moganite However, all hithertoknown PON-modifications crystallize in knownSiO2-structures 14 J. M. Léger et. al. Phys. Chem. Miner. 2001, 28, 388; J. M. Léger et. al. J. Phys. Chem. Solids1999, 60, 145; C. Chateau et. al. Am. Mineral. 1999, 84, 207; J. Haines et. al. Acta Cryst. 1999, B55, 677.
Oxonitridophosphates – H3P8O8N9 - Interruptedframeworkstructure (k = 0.47) - Hydrogen atompositionslocatedusing MAS-NMR 15 S.J. Sedlmaier, V.R. Celinski, J. Schmedt auf der Günne, W. Schnick, Chem. Eur. J.2012, 18, 4358.
Oxonitridophosphates – d-PON Synthesis ofd-PON 12 GPa/1250°C "aPON"d-PON • - Network of all-sidevertexsharingtetrahedra • New AB2structure type withunprecedentednetworktopology • First polymorph of PON in a novelframework type • - Absence of hydrogen provenby FTIR- and MAS-NMR-spectroscopy 16 D. Baumann, S. J. Sedlmaier, W. Schnick, Angew. Chem.2012, 124, 4785; Angew. Chem. Int. Ed. 2012, 51, 4707.
Oxonitridophosphates – d-PON Symmetry relationship to a predicted SiO2-polymorph Cmce t2 t2 (Aristotype) Bbbe2 P21/c (predicted for SiO2) (d-PON) • Structure of d-PON (right) crystallographically related to a predicted • SiO2-modification (left) through a common aristotype (top) 17
II. Novel Binary Nitrides Highlights in Nitride and Diazenide chemistry
Novel Binary Nitrides and Diazenides – an Overview Density Functional Study of Calcium Nitride: Refined Geometries and Prediction of High-Pressure Phases Group II Element Nitrides M3N2 Under Pressure: A Comparative Density Functional Study Ca3N2 and Mg3N2: Unpredicted High-Pressure Behavior of Binary Nitrides. Synthesis of Alkaline Earth Diazenides MAEN2 (MAE = Ca, Sr, Ba) by Controlled Thermal Decomposition of Azides under High Pressure High-Pressure Synthesis and Characterization of the Alkali Diazenide Li2N2 Reversible High-Pressure Phase Transition in LaN Materials Properties of Ultra-Incompressible Re2P
What are Diazenides? [N=N]2- ~ νNN = 1304–1347 cm-1 H-N=N-H Diazene dNN = 1.21–1.25 Å • F. Holleman, E. Wiberg in Lehrbuch der Anorganischen Chemie, Vol. 102, de Gruyter, Berlin-New York, 2007; • N. Wiberg, G. Fischer, H. Bachhuber, Angew. Chem. Int. Ed.1977, 16, 780.
Controlled thermal decomposition of ionic azides @ HP/HT-conditions 12 GPa/800°C Ca(N3)2 CaN2 + 2 N2 9 GPa/550°C Sr(N3)2 SrN2 + 2 N2 3 GPa/450°C Ba(N3)2 BaN2 + 2 N2 S.B. Schneider, R. Frankovsky, W. Schnick, Inorg. Chem.2012, 51, 2366
Synthesis of MAE-Diazenides (MAE = Ca, Sr, Ba) CaN2 SrN2 BaN2 isotypic 12 GPa, 800°C 9 GPa, 550°C 3 GPa, 450°C I4/mmm (no. 139) I4/mmm (no. 139) C2/c (no. 15) dNN = 1.202(4) Å dNN = 1.239(4) Å dNN = 1.23(2) Å ~ ~ ~ νNN = 1376.9 cm-1νNN = 1378.9 cm-1νNN = 1375.9 cm-1 S.B. Schneider, R. Frankovsky, W. Schnick, Inorg. Chem.2012, 51, 2366
Electronic Structure – CaN2 and SrN2 SrN2 metallic CaN2 SrN2 proven by conductivity measurements S.B. Schneider, R. Frankovsky, W. Schnick, Inorg. Chem.2012, 51, 2366
Electronic Structure– CaN2and SrN2 about 50 % occupationofπ* CaN2 SrN2 DOS COHP (MAE-N) COHP (N-N) S.B. Schneider, R. Frankovsky, W. Schnick, Inorg. Chem.2012, 51, 2366
Further MAE-Diazenides? Pre-condition: MAE(N3)2 H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Ga Ge As Se Br Kr Rb Sr In Sn Sb Te I Xe Cs Ba Tl Pb Bi Po As Rn Alkali Diazenides? Alkali azides available
Successful Synthesis of Li2N2 The First Alkali Diazenide 9 GPa/450°C 2 LiN3 Li2N2 + 2 N2 S.B. Schneider, R. Frankovsky, W. Schnick, Angew. Chem.2012, 124, 1909; Angew. Chem. Int. Ed.2012, 51, 1873.
Successful Synthesis of Li2N2 The First Alkali Diazenide CN(Li+) = 4, 6, 8 CN([N2]2-) = 8 dNN = 1.301(3) Å S.B. Schneider, R. Frankovsky, W. Schnick, Angew. Chem.2012, 124, 1909; Angew. Chem. Int. Ed.2012, 51, 1873.
Li2N2 – Spectroscopic and Electronic Analysis DOS COHP (N–N) [N2]2– vibration @ 1326.8 cm-1 Bandstructure: metallic IR-Spectrum proven by calculation of phononic DOS (R. Dronskwoski et al.) S.B. Schneider, R. Frankovsky, W. Schnick, Angew. Chem.2012, 124, 1909; Angew. Chem. Int. Ed.2012, 51, 1873.
Li2N2 – Spectroscopic and Electronic Analysis DOS COHP (N–N) about 50 % occupationofπ* S.B. Schneider, R. Frankovsky, W. Schnick, Angew. Chem.2012, 124, 1909; Angew. Chem. Int. Ed.2012, 51, 1873.
Summary • 8 accepted proposals for DESY or ESRF • 2 installed Multianvil presses at LMU • 20 publications in 2009-2012 period up to now • 8 PhD candidates/degrees Multianvil presses and DACs