1 / 9

BLS signature

BLS signature. G 1 ,G 2 and G T 是 ( 乘法 ) 循環群 , 屬於指令 P g1 ← G1 ; g2 ←G2 g 1 產生於 G 1 g 2 產生於 G 2 Ψ 是一 可計算的同構從 G 2 到 G 1 , 用 Ψ ( g 2 ) = g 1 e 是一 可計算的雙線性映射 e : G 1 × G 2 → G T. co-CDH, co-DDH and co-GDH problems. 計算 co-Diffie-Hellman (co-CDH) on (G 1 ,G 2 ):

cahil
Download Presentation

BLS signature

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. BLS signature

  2. G1,G2 and GT 是(乘法)循環群,屬於指令P • g1 ← G1 ; g2 ←G2 • g1產生於G1 • g2 產生於G2 • Ψ是一可計算的同構從G2到 G1 , 用Ψ(g2) = g1 • e是一可計算的雙線性映射 e : G1 × G2 →GT

  3. co-CDH, co-DDH and co-GDH problems 計算 co-Diffie-Hellman (co-CDH) on (G1,G2): 假設 g2,g2a∈G2 and h ∈ G1, 計算 ha∈ G1. 決定 co-Diffie-Hellman (co-DDH) on (G1,G2): 假設 g2,g2a∈ G2 and h,hb∈ G1, Output YES if a = b and Output no otherwise

  4. 一個成功概率算法 A 在解決 co-CDH problem on (G1, G2) • 兩組(G1, G2)是一(τ, t,ε)-co-GDH group pair : • - 在兩組群運算G1 and G2 and the map ψ可 以計算在大部分時間τ • - co-DDH問題在(G1, G2)可以解決大部分的時間τ • 沒有算法 (t,ε)-breaks co-CDH on (G1, G2)

  5. 當(G1, G1)是一 (τ, t, ε)-co-GDH group pair 我們說 G1是一 (τ, t, ε)-GDH group • 雙線性映射

  6. 短簽名方案 • 允許(G1, G2)是(t,ε)-co-GDH 組對 • |G1| = |G2| = p • 哈希函數H: {0, 1}∗ → G1 • 簽字σ是 一個屬於G1的要素 • 該簽名方案包含三個運算法則,密碼生成,簽名和驗證

  7. 密碼生成: • 私鑰 • 公鑰 • 簽名: • 驗證:

  8. 安全 • 安全簽名計劃相對存在偽造在適應性選擇,消息攻擊下在隨機預言模型 • 存在偽造 • -創造(尤對手)任何信息m和一有效的簽名σ為m,其中m尚未簽署 • -該消息m不必有任何特殊的含義,只要這一對(m,σ) 是有效的,敵手已經成功地構建一個存在偽造 • -存在偽造是實質上那些最弱的敵對目標,因此,最強烈的那些計劃“其存在是不可偽造的”

  9. 適應的選擇,訊息攻擊 • -攻擊模型為了數位簽名 • -攻擊者可以要求一預言式簽名簽署任意訊息 • -他可以這樣做多次和適應他所選擇的基礎,這個結果屬於前面的簽名查詢 • -攻擊被認為是成功的,如果攻擊者可以想出一個簽名的訊息為此他以前沒有要求簽名

More Related