1 / 67

ENGM 661 Engineering Economics for Managers

ENGM 661 Engineering Economics for Managers. Investment Worth. Tonight’s Learning Objectives. Given a minimum attractive rate-of-return, be able to evaluate the investment worth of a project using Net Present Worth Equivalent Annual Worth Internal Rate of Return External Rate of Return

caine
Download Presentation

ENGM 661 Engineering Economics for Managers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ENGM 661 Engineering Economics for Managers InvestmentWorth

  2. Tonight’s Learning Objectives • Given a minimum attractive rate-of-return, be able to evaluate the investment worth of a project using • Net Present Worth • Equivalent Annual Worth • Internal Rate of Return • External Rate of Return • Capitalized Cost Method

  3. Investment Worth MARR Suppose a company can earn 12% / annum in U. S. Treasury bills No way would they ever invest in a project earning < 12% Def:The Investment Worth of all projects are measured at the Minimum Attractive Rate of Return (MARR) of a company.

  4. MARR MARRis company specific • utilities - MARR = 10 - 15% • mutuals - MARR = 12 - 18% • new venture - MARR = 20 - 30% MARR based on • firms cost of capital • Price Index • Treasury bills

  5. Investment Worth Alternatives • NPW(MARR) > 0 Good Investment

  6. Investment Worth Alternatives • NPW(MARR) > 0 Good Investment • EUAW(MARR) > 0 Good Investment

  7. Investment Worth Alternatives • NPW(MARR) > 0 Good Investment • EUAW(MARR) > 0 Good Investment • IRR > MARR Good Investment

  8. Present Worth Example: Suppose you buy and sell a piece of equipment. Purchase Price $16,000 Sell Price (5 years) $ 4,000 Annual Maintenance $ 3,000 Net Profit Contribution $ 6,000 MARR 12% Is it worth it to the company to buy the machine?

  9. 4,000 4,000 6,000 3,000 0 0 5 5 3,000 16,000 Present Worth NPW = -16 + 3(P/A,12,5) + 4(P/F,12,5) 16,000

  10. 4,000 4,000 6,000 3,000 0 0 5 5 3,000 16,000 Present Worth NPW = -16 + 3(P/A,12,5) + 4(P/F,12,5) = -16 +3(3.6048) + 4(.5674) 16,000

  11. 4,000 4,000 6,000 3,000 0 0 5 5 3,000 16,000 Present Worth NPW = -16 + 3(P/A,12,5) + 4(P/F,12,5) = -16 +3(3.6048) + 4(.5674) = -2.916 = -$2,916 16,000

  12. Annual Worth Annual Worth (AW or EUAW) AW(i) = PW(i) (A/P, i%, n) = [ At (P/F, i%, t)](A/P, i%, n) AW(i) = Annual Worth of Investment AW(i) > 0 **OK Investment** 

  13. 4,000 3,000 0 5 16,000 Annual Worth; Example Repeating our PW example, we have AW(12) = -16(A/P,12,5) + 3 + 4(A/F,12,5)

  14. 4,000 3,000 0 5 16,000 Annual Worth; Example Repeating our PW example, we have AW(12) = -16(A/P,12,5) + 3 + 4(A/F,12,5) = -16(.2774) + 3 + 4(.1574)

  15. 4,000 3,000 0 5 16,000 Annual Worth; Example Repeating our PW example, we have AW(12) = -16(A/P,12,5) + 3 + 4(A/F,12,5) = -16(.2774) + 3 + 4(.1574) = -.808 = -$808

  16. 4,000 3,000 0 5 16,000 Alternately AW(12) = PW(12) (A/P, 12%, 5) = -2.92 (.2774) = - $810 < 0 NO GOOD

  17. Internal Rate of Return Internal Rate-of-Return IRR- internal rate of return is that return for which NPW(i*) = 0 i* = IRR i* > MARR **OK Investment**

  18. Internal Rate of Return Internal Rate-of-Return IRR- internal rate of return is that return for which NPW(i*) = 0 i* = IRR i* > MARR **OK Investment** Alt: FW(i*) = 0 = At(1 + i*)n - t 

  19. Internal Rate of Return Internal Rate-of-Return IRR- internal rate of return is that return for which NPW(i*) = 0 i* = IRR i* > MARR **OK Investment** Alt: FW(i*) = 0 = At(1 + i*)n - t PWrevenue(i*) = PWcosts(i*) 

  20. 4,000 3,000 0 5 16,000 Internal Rate of Return Example PW(i) = -16 + 3(P/A, i, 5) + 4(P/F, i, 5)

  21. 4,000 3,000 0 5 16,000 Internal Rate of Return Example PW(i) = -16 + 3(P/A, i, 5) + 4(P/F, i, 5)

  22. 4,000 3,000 0 5 16,000 Internal Rate of Return Example PW(i) = -16 + 3(P/A, i, 5) + 4(P/F, i, 5) i* = 5 1/4 % i* < MARR

  23. Spreadsheet Example

  24. Public School Funding

  25. Public School Funding 216% 16 yrs

  26. 216 100 1 2 3 16 F = P(F/P,i*,16) (F/P,i*,16) = F/P = 2.16 (1+i*)16 = 2.16 School Funding

  27. 216 100 1 2 3 16 School Funding (1+i*)16 = 2.16 16 ln(1+i*) = ln(2.16) = .7701

  28. 216 100 1 2 3 16 School Funding (1+i*)16 = 2.16 16 ln(1+i*) = ln(2.16) = .7701 ln(1+i*) = .0481

  29. 216 100 1 2 3 16 School Funding (1+i*)16 = 2.16 16 ln(1+i*) = ln(2.16) = .7701 ln(1+i*) = .0481 (1+i*) = e.0481 = 1.0493

  30. 216 100 1 2 3 16 School Funding (1+i*)16 = 2.16 16 ln(1+i*) = ln(2.16) = .7701 ln(1+i*) = .0481 (1+i*) = e.0481 = 1.0493 i* = .0493 = 4.93%

  31. 216 100 1 2 3 16 School Funding We know i = 4.93%, is that significant growth?

  32. 216 100 1 2 3 16 School Funding We know i = 4.93%, is that significant growth? Suppose inflation = 3.5% over that same period.

  33. 216 100 1 2 3 16 i  j . 0493  . 0350 d   1  j 1 . 0350 School Funding We know i = 4.93%, is that significant growth? Suppose inflation = 3.5% over that same period. d= 1.4%

  34. Summary • NPW > 0 Good Investment

  35. Summary • NPW > 0 Good Investment • EUAW > 0 Good Investment

  36. Summary • NPW > 0 Good Investment • EUAW > 0 Good Investment • IRR > MARR Good Investment

  37. Summary • NPW > 0 Good Investment • EUAW > 0 Good Investment • IRR > MARR Good Investment Note: If NPW > 0 EUAW > 0 IRR > MARR

  38. 4,100 2,520 0 1 2 3 n 1,000 5,580 IRR Problems Consider the following cash flow diagram. We wish to find the Internal Rate-of-Return (IRR).

  39. 4,100 2,520 0 1 2 3 n 1,000 5,580 IRR Problems Consider the following cash flow diagram. We wish to find the Internal Rate-of-Return (IRR). PWR(i*) = PWC(i*) 4,100(1+i*)-1 + 2,520(1+i*)-3 = 1,000 + 5,580(1+i*)-2

  40. NPV vs. Interest $25 $20 $15 $10 Net Present Value $5 $0 0% 10% 20% 30% 40% 50% 60% ($5) Interest Rate IRR Problems

  41. External Rate of Return Purpose: to get around a problem of multiple roots in IRR method Notation: At = net cash flow of investment in period t At , At > 0 0 , else -At , At < 0 0 , else rt = reinvestment rate (+) cash flows (MARR) i’ = rate return (-) cash flows  Rt =  Ct =

  42. External Rate of Return Method find i = ERR such that Rt (1 + rt) n - t = Ct (1 + i’) n - t Evaluation If i’ = ERR > MARR Investment is Good  

  43. 4,100 2,520 0 2 3 1 1,000 5,580 External Rate of Return ExampleMARR = 15% Rt (1 + .15) n - t = Ct (1 + i’) n - t 4,100(1.15)2 + 2,520 = 1,000(1 + i’)3 + 5,580(1 + i’)1 i’ = .1505  

  44. 4,100 2,520 0 2 3 1 1,000 5,580 External Rate of Return ExampleMARR = 15% Rt (1 + .15) n - t = Ct (1 + i’) n - t 4,100(1.15)2 + 2,520 = 1,000(1 + i’)3 + 5,580(1 + i’)1 i’ = .1505 ERR > MARR  

  45. 4,100 2,520 0 2 3 1 1,000 5,580 External Rate of Return ExampleMARR = 15% Rt (1 + .15) n - t = Ct (1 + i’) n - t 4,100(1.15)2 + 2,520 = 1,000(1 + i’)3 + 5,580(1 + i’)1 i’ = .1505 ERR > MARR Good Investment  

  46. Savings Investment Ratio Method 1 Let i = MARR SIR(i) =Rt (1 + i)-t Ct (1 + i)-t = PW (positive flows) - PW (negative flows)  

  47. Relationships among MARR, IRR, and ERR • If IRR < MARR, then IRR < ERR < MARR • If IRR > MARR, then IRR > ERR > MARR • If IRR = MARR, then IRR = ERR = MARR

  48. Savings Investment Ratio Method #2 SIR(i) = At (1 + i) -t Ct (1 + i) -t SIR(i) = PW (all cash flows) PW (negative flows)  

  49. Savings Investment Ratio Method #2 SIR(i) = At (1 + i) -t Ct (1 + i) -t SIR(i) = PW (all cash flows) PW (negative flows) Evaluation: Method 1: If SIR(t) > 1 Good Investment Method 2: If SIR(t) > 0 Good Investment  

  50. 7 3 3 3 3 0 4 1 2 3 5 16 Savings Investment Ratio Example SIR(t) = 3(P/A, 12%, 5) + 4(P/F, 12%, 5) 16 = 3(3.6048) + 4(.5674) 16 = .818 < 1.0

More Related