330 likes | 468 Views
TM 661 Engineering Economics for Managers. Risk Analysis. A 1 A 2 A 3. 3. ,. 000. p. . 1. /. 4. . . A i. . 4. ,. 000. p. . 1. /. 2. . 1 2 3. . 5. ,. 000. p. . 1. /. 4. . 10,000. Class Problem.
E N D
TM 661Engineering Economics for Managers Risk Analysis
A1 A2 A3 3 , 000 p 1 / 4 Ai 4 , 000 p 1 / 2 1 2 3 5 , 000 p 1 / 4 10,000 Class Problem Suppose we have the following cash flow diagram (MARR = 15%). Determine if the project is worthwhile.
Solution Methodologies • Bounding • C.L.T. (Assume Normality) • Analytic • Simulation
A1 A2 A3 3 , 000 p 1 / 4 Ai 4 , 000 p 1 / 2 1 2 3 5 , 000 p 1 / 4 10,000 Bounding Lower Bound
A1 A2 A3 3 , 000 p 1 / 4 Ai 4 , 000 p 1 / 2 1 2 3 5 , 000 p 1 / 4 10,000 Bounding Upper Bound
A1 A2 A3 3 , 000 p 1 / 4 Ai 4 , 000 p 1 / 2 1 2 3 5 , 000 p 1 / 4 10,000 Bounding Upper & Lower Bounds
A1 A2 A3 3 , 000 p 1 / 4 Ai 4 , 000 p 1 / 2 1 2 3 5 , 000 p 1 / 4 10,000 Central Limit Theorem Preliminary
A1 A2 A3 3 , 000 p 1 / 4 Ai 4 , 000 p 1 / 2 1 2 3 5 , 000 p 1 / 4 10,000 Central Limit Theorem Distribution of NPW
A1 A2 A3 3 , 000 p 1 / 4 - = 867 E [ NPW ] Ai 4 , 000 p 1 / 2 1 2 3 5 , 000 p 1 / 4 10,000 Central Limit Theorem Distribution of NPW
A1 A2 A3 3 , 000 p 1 / 4 N(-867, 938) - = 867 E [ NPW ] Ai 4 , 000 p 1 / 2 1 2 3 5 , 000 p 1 / 4 10,000 -3,681 -867 1,947 Central Limit Theorem Distribution of NPW
A1 A2 A3 N(-867, 938) 1 2 3 10,000 -3,681 -867 1,947 Central Limit Theorem Distribution of NPW
P{NPW >0} = .031 .063 .031 .016 .031 .016 .188
Analytic P{NPW > 0} = 0.188 C.L.T. P{NPW > 0} = 0.178
A1 A2 A3 3 , 000 p 1 / 4 Ai 4 , 000 p 1 / 2 1 2 3 5 , 000 p 1 / 4 10,000 Simulation
A1 A2 A3 3 , 000 p 1 / 4 Ai 4 , 000 p 1 / 2 1 2 3 5 , 000 p 1 / 4 10,000 Simulation
Simulation P{NPW > 0} = 5/20 = 0.25
Simulation Analytic P{NPW > 0} = 0.188 C.L.T. P{NPW > 0} = 0.178 Simulation P{NPW > 0} = 0.25
@Risk Analytic P{NPW > 0} = 0.188 C.L.T. P{NPW > 0} = 0.178 Simulation P{NPW > 0} = 0.25 @Risk P{NPW > 0} = 0.20
A1 A2 A3 7,000 ( x 1 , 000 ) / 3 , 000 F ( x ) 1 e Class Problem You are given the following cash flow diagram. The Ai are iid shifted exponentials with location parameter a = 1,000 and scale parameter = 3,000. The cumulative is then given by , x > 1,000
A1 A2 A3 7,000 ( x 1 , 000 ) / 3 , 000 F ( x ) 1 e Class Problem You are given the first 3 random numbers U(0,1) as follows: P1 = 0.8 P2 = 0.3 P3 = 0.5 You are to compute one realization for the NPW. MARR = 15%.
x 1000 P 1 e 3000 x 1000 e 3000 1 P x 1000 ln( 1 P ) 3000 x 1 , 000 3 , 000 ln( 1 P ) Class Problem
x 1 , 000 3 , 000 ln( 1 P ) Class Problem A1 = 1,000 - 3000 ln(1 - .8) = 5,828 A2 = 1,000 - 3000 ln(1 - .3) = 2,070 A3 = 1,000 - 3000 ln(1 - .5) = 3,079
5,828 3,079 2,070 7,000 Class Problem NPW = -7,000 + 5,828(1.15)-1 + 2,070(1.15)-2 + 3,079(1.15)-3 = 1,657
A1 A2 A3 7,000 f ( x ) x 1 e x / ( ) Class Problem You are given the following cash flow diagram. The Ai are iid gammas with shape parameter = 4 and scale parameter = 3,000. The density function is given by , x > 0
A1 A2 A3 7,000 Class Problem You are given the first 3 random numbers U(0,1) as follows: P1 = 0.8 P2 = 0.3 P3 = 0.5 You are to compute one realization for the NPW. MARR = 15%.
Class Problem For a = integer, the cumulative distribution function is given by Set P = F(x), solve for x
Class Problem For general a (not integer), F(x) = not analytic
Class Problem For general a (not integer), F(x) = not analytic No Inverse