730 likes | 867 Views
TM 661 Engineering Economics for Managers. Risk Analysis. A A A A A. MARR = 15%. 1 2 3 4 5. 10,000. Motivation. Suppose we have the following cash flow diagram. NPW = -10,000 + A(P/A, 15, 5). 2. ,. 000. p. . 1. /. 6. .
E N D
TM 661Engineering Economics for Managers Risk Analysis
A A A A A MARR = 15% 1 2 3 4 5 10,000 Motivation Suppose we have the following cash flow diagram. NPW = -10,000 + A(P/A, 15, 5)
2 , 000 p 1 / 6 A 3 , 000 p 2 / 3 4 , 000 p 1 / 6 Motivation Now suppose that the annual return A is a random variable governed by the discrete distribution:
2 , 000 p 1 / 6 A 3 , 000 p 2 / 3 4 , 000 p 1 / 6 Motivation For A = 2,000, we have NPW = -10,000 + 2,000(P/A, 15, 5) = -3,296
2 , 000 p 1 / 6 A 3 , 000 p 2 / 3 4 , 000 p 1 / 6 Motivation For A = 3,000, we have NPW = -10,000 + 3,000(P/A, 15, 5) = 56
2 , 000 p 1 / 6 A 3 , 000 p 2 / 3 4 , 000 p 1 / 6 Motivation For A = 4,000, we have NPW = -10,000 + 4,000(P/A, 15, 5) = 3,409
Motivation There is a one-for-one mapping for each value of A, a random variable, to each value of NPW, also a random variable. A 2,000 3,000 4,000 p(A) 1/6 2/3 1/6 NPW -3,296 56 3,409 p(NPW) 1/6 2/3 1/6
A1 A2 A3 A4 A5 MARR = 15% 1 2 3 4 5 10,000 Risk Analysis Now Suppose the return in each year is a random variable governed by the some probability distribution. NPW = -10,000 + A1(1+i)-1 + A2(1+i)-2 + . . . + A5(1+i)-5
A1 A2 A3 A4 A5 MARR = 15% 1 2 3 4 5 10,000 5 10 , 000 a A t t t 1 where a ( 1 i ) t t Risk Analysis NPW = -10,000 + A1(1+i)-1 + A2(1+i)-2 + . . . + A5(1+i)-5
Risk Analysis Now suppose At iid N(3,000, 250) NPW is a linear combination of normals
Risk Analysis Now suppose At iid N(3,000, 250) NPW is a linear combination of normals NPW Normal Central Limit
Risk Analysis Now suppose At iid N(3,000, 250) NPW is a linear combination of normals NPW Normal NPW N(NPW, NPW)
5 E [ NPW ] E [ 10 , 000 a A NPW t t t 1 Mean Recall: E[Z] = E[X1] + E[X2] E[aX+b] = aE[X] + b
5 E [ NPW ] E [ 10 , 000 a A NPW t t t 1 5 10 , 000 a E [ A ] NPW t t t 1 Mean Recall: E[Z] = E[X1] + E[X2] E[aX+b] = aE[X] + b
5 10 , 000 a E [ A ] NPW t t t 1 5 10 , 000 a [ 3,000 ] NPW t t 1 Mean but, E[At] = 3,000
5 10 , 000 a [ 3,000 ] NPW t t 1 5 a = -10,000 + 3,000 t t 1 5 (1+i)-t = -10,000 + 3,000 t 1 Mean = -10,000 + 3,000(P/A, i, 5)
2 2 ( 10 , 000 a A ) NPW t t Variance Recall: 2(z) = 2(x) + 2(y) 2(ax+b) = a22
2 2 ( 10 , 000 a A ) NPW t t 2 2 a 2 NPW A t t Variance Recall: 2(z) = 2(x) + 2(y) 2(ax+b) = a22
2 2 a 2 (At) NPW t 2 ( A ) 250 2 t 2 2 ( 250 ) 2 a NPW t Variance but, = (250)2 [(1+i)-2 + (1+i)-4 + . . . + (1+i)-10]
2 2 ( 250 ) 2 a A=(250)2 NPW t 1 2 3 4 5 6 7 8 9 10 P=s2NPW Variance = (250)2 [(1+i)-2 + (1+i)-4 + . . . + (1+i)-10] Note that [(1+i)-2 + (1+i)-4 + . . . + (1+i)-10 ] is just a 5 period annuity factor where the period is 2 years.
2 2 ( 250 ) 2 a A=(250)2 NPW t 1 2 3 4 5 6 7 8 9 10 P=s2NPW Variance = (250)2 [(1+i)-2 + (1+i)-4 + . . . + (1+i)-10] = (250)2(P/A, ieff, 5) , ieff = (1+i)2 -1
A1 A2 A3 A4 A5 1 2 3 4 5 At iid N(3,000, 250) 10,000 Risk Analysis MARR = 15% mNPW = -10,000 + 3,000(P/A, 15, 5) = -10,000 + 3,000(3.3522) = $56
A1 A2 A3 A4 A5 1 2 3 4 5 At iid N(3,000, 250) 10,000 Risk Analysis MARR = 15% ieff = (1.15)2 - 1 = 32.25% NPW = -10,000 + 3,000(P/A, 15, 5) = -10,000 + 3,000(3.3522) = $56
A1 A2 A3 A4 A5 1 2 3 4 5 At iid N(3,000, 250) 10,000 Risk Analysis MARR = 15% ieff = (1.15)2 - 1 = 32.25% NPW = -10,000 + 3,000(P/A, 15, 5) = -10,000 + 3,000(3.3522) = $56 s2NPW = (250)2(P/A, 32.25, 5) = 62,500(2.3343) = 145,894
A1 A2 A3 A4 A5 1 2 3 4 5 At iid N(3,000, 250) 10,000 Risk Analysis MARR = 15% NPW = $56 s2NPW = 145,894 s = 382 NPW N(56, 382)
A1 A2 A3 A4 A5 N(56, 382) 1 2 3 4 5 At iid N(3,000, 250) 10,000 -1,090 56 1,202 Risk Analysis MARR = 15% NPW N(56, 382)
A1 A2 A3 A4 A5 N(56, 382) 1 2 3 4 5 10,000 -1,090 56 1,202 - m - NPW 0 56 < = < NPW P ( NPW 0 ) P s 382 NPW Risk Analysis NPW N(56, 382)
A1 A2 A3 A4 A5 N(56, 382) 1 2 3 4 5 10,000 -1,090 56 1,202 - m - NPW 0 56 < = < NPW P ( NPW 0 ) P s 382 NPW Risk Analysis NPW N(56, 382) = P( Z < -0.15 ) = 0.44
A1 A2 5 , 000 , 0 . 6 If Ai iid 7 , 000 , 0 . 4 10,000 Class Problem You are given the following cash flow diagram: Compute the distribution for the Net Present Worth if the MARR = 15%.
A1 A2 A3 A4 A5 35,000 If Ai iid N(10,000, 300) Class Problem You are given the following cash flow diagram: If the MARR = 15%, what is the probability this investment alternative is no good?
2 2 2 4 10 ( NPW ) 300 [( 1 . 15 ) ( 1 . 15 ) . . . ( 1 . 15 ) ] Class Problem E[NPW] = -35,000 + 10,000(P/A, 15, 5) = -35,000 + 10,000(3.3522) = - 1,478 = 3002 (2.3343) = 210,087
NPW 0 ( 1 , 478 ) P 458 1 . 0 Class Problem NPW N(-1,478 , 458) P{NPW < 0} = = P{Z < 3.27}
A1 A2 A3 A4 A5 35,000 If Ai iid N(10,000, 300) A Critical Thunk Max Ai 10,900
A1 A2 A3 A4 A5 35,000 A Critical Thunk If Max Ai 10,900 NPW = -35,000 + 10,900(P/A, 15, 5) = -35,000 + 10,900(3.3522) = 1,539
A1 A2 10,000 A Twist Suppose we have the following cash flow diagram. If Ai iid U(5000, 7000) Now how can we compute the distribution of the NPW? MARR = 15%.
Solution Alternatives • Assume normality
Solution Alternatives • Assume normality • Upper/Lower Bounds • Laplace Transforms • Transformation/Convolution • Simulation
A1 A2 10,000 Simulation Let us arbitrarily pick a value for A1 and A2 in the uniform range (5000, 7000). Say A1 = 5,740 and A2 = 6,500.
A1 A2 5,740 6,500 10,000 10,000 Simulation NPW = -10,000 + 5,740(1.15)-1 + 6,500(1.15)-2 = (93.96)
A1 A2 5,740 6,500 10,000 10,000 Simulation We now have one realization of NPW for a given realization of A1 and A2.
A1 A2 5,740 6,500 10,000 10,000 Simulation We now have one realization of NPW for a given realization of A1 and A2. Choose 2 new values for A1, A2.
A1 A2 6,820 6,218 10,000 10,000 A1 = 6,820 A2 = 6,218 NPW = -10,000 + 6,820(1.15)-1 + 6,218(1.15)-2 = 632.14
Summary A1 A2 NPW 5,740 6,500 (93.96) 6,820 6,218 632.14 Choose 2 new values.
A1 A2 5,273 6,422 10,000 10,000 A1 = 5,273 A2 = 6,422 NPW = -10,000 + 5,273(1.15)-1 + 6,422(1.15)-2 = (558.83)
Summary A1 A2 NPW 5,740 6,500 (93.96) 6,820 6,218 632.14 5,273 6,422 (558.83) Choose 2 new values.
Summary A1 A2 NPW 5,740 6,500 (93.96) 6,820 6,218 632.14 5,273 6,422 (558.83) . . . 6,855 5,947 457.66
Freq. NPW -1,871 0 1,380 Simulation With enough realizations of A1, A2, and NPW, we can begin to get a sense of the distribution of the NPW.