1 / 20

Productivity and the Coral Symbiosis II

Productivity and the Coral Symbiosis II. dinoflagellates chlorophylls a and c lack chlorophyll b characteristic dinoflagellate pigments diadinoxanthin and peridinin ~ 3 x 10 6 cells/cm 2 coloured tinge to the coral brown to yellow brown.

calum
Download Presentation

Productivity and the Coral Symbiosis II

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Productivity and the Coral Symbiosis II

  2. dinoflagellates • chlorophylls a and c • lack chlorophyll b • characteristic dinoflagellate pigments diadinoxanthin and peridinin • ~ 3 x 106 cells/cm2 • coloured tinge to the coral • brown to yellow brown

  3. Zooxanthellae can live outside their host • essential in some species for finding a host • Dinomastigotesstage • motile free-living state, have two flagellae • Coccoid stage • living in animal cells, lack flagellae • In culture, zooxanthellae alternate between coccoid and dinomastigote stages

  4. Almost all zooxanthellae are in the dinflagellate genus Symbiodinium (1959) • taxonomy of Symbiodinium in a state of flux • 1980 - Symbiodinium microadriaticumassumed to be the one species found in almost all corals

  5. Recent work • great genetic diversity in zooxanthellae • clearly more than one species • at least 16 different algal taxa • zooxanthellae found in closely related coral species not necessarily closely related themselves • zooxanthellae found in distantly related coral species may, in fact, be closely related • may have multiple species in same coral

  6. Acquisition of Zooxanthellae by Corals either 1. open (or indirect) transmission or acquisition • from the environment or 2. closed (or direct) transmission or acquisition - via gametes or - during asexual reproduction

  7. Indirectacquisition • provides potential for host to establish a symbiosis with a different strain or species of zooxanthellae than was in symbiosis with the host’s parents • Coral bleaching • may also allow establishment of new symbiosis with different zooxanthellae strain, • has been proposed as a possible adaptive mechanism to environmental change • Shifting symbioses • controversial topic

  8. In all hermatypic corals endosymbiotic algae provide an important source of nutrients • can demonstrate mutualistic relationship • feed 14CO2 to the coral • quickly taken up by alga and ends up in the polyp • feed zooplankton raised on 15N to coral • quickly taken up by polyp and ends up in the alga

  9. clear they exchange a lot of material • benefit each other • reef-shading experiments • 3 months in the dark • algae expelled from the polyps • later the polyps died • Most coral polyps have absolute requirement for alga - but not vice-versa

  10. MUTUALISM - benefits for algae? • shelter • protection from nematocysts, & other predation • receive waste products of polyp - CO2 & N • N is v.limiting in marine environment • the major limitation to plant growth • algal blooms occur in response to small changes in N • pressure exists to optimize N scavenging • favours such a mutualistic relationship • Disadvantage • algae restricted to shallow tropical waters

  11. MUTUALISM - benefits for polyp? • food (CHO) • O2 • greatly increased ability to precipitate CaCO3 • without the alga, coral could not have such a high rate of metabolism • could not build such extensive reef structures

  12. Polyp can survive extended periods with no external food source • Tight internal N-cycling and algal PS • Polyp lays down extensive lipid reserves to be drawn on in times of starvation • High light and high food availability • ejection of pellets containing viable algal cells • Control of algal cell number ? • Algae divide within host polyp

  13. Analyze algal cell • C,H,O from PS • N,P,S, from host (normally limiting) • Symbiosis controlled by host • Polyp controls permeability of algal membrane • “signal molecules”

  14. Freshly isolated zooxanthellae • Incubate in light with 14CO2 • Release very little organic C into medium • Add some polyp extract - releases lots of organic carbon into medium • Other cnidarian extracts work

  15. Alga donates most of it’s fixed C to polyp • used for resp, growth, etc. • Polyp respires • releases CO2 to alga • Polyp excretes N waste - NH3 • used by alga • Polyp also releases PO4-, SO4-, NO3- to alga • 1000x more conc. than in seawater • Algae grow faster - helps polyp

  16. FOOD Polyp Protein CHO Lipid Growth & metabolism AAs Sugars Fatty acids ATP NH3 CO2 O2 NH3 CO2 O2 glycerol AAs AAs Sugars Fatty acids LIGHT ATP NADPH Protein CHO PO4- PO4- H2O H2O Growth & metabolism SO4- SO4- Alga

  17. Mar Drugs. 2010; 8(10): 2546–2568.

  18. Alga stores CHO – starch • Broken down at night • Polyp stores lipid – fat bodies • Energy reserve • Algal PS: 90% fixed C to coral host • Used for metabolic functions • Growth, reproduction & • Calcium deposition

More Related