90 likes | 364 Views
1. Gelombang Mekanis Gelombag didalam medium yang dapat mengalami deformasi atau medium elastik. Gelombang ini berasal dari pergeseran suatu bagian medium elastik dari kedudukan normalnya dan ditransmisikan dari satu lapis kelapis yang lainnya. Contohnya gelombang bunyi, tali dan gelombang air.
E N D
1. Gelombang Mekanis • Gelombag didalam medium yang dapat mengalami deformasi atau medium elastik. Gelombang ini berasal dari pergeseran suatu bagian medium elastik dari kedudukan normalnya dan ditransmisikan dari satu lapis kelapis yang lainnya. Contohnya gelombang bunyi, tali dan gelombang air. • Ada bermacam-macam gelombang mekanis yaitu • a. Gelombang transversal • Terjadi bila gerak partikel yang mengangkut gelombang tegak lurus • terhadap arah penjalaran gelombang. Misalnya gelombang tali. • b. Gelombang longitudinal • Terjadi bila gerak partikel yang mengangkut gelombang sejajar terhadap • arah penjalaran gelombang. Misalnya gelombang pada pegas. • c. Gelombang bidang • Terjadi jika muka gelombang yang dijalarkan arahnya tunggal • d. Gelombang speris • Terjadi jika muka gelombang dijalarkan kesemua arah dari sumbernya
2. Persamaan Gelombang • Jika sebuah gelombang transversal berjalan, pada t = 0, posisinya y = f(x). Pada t tertentu gelombang telah berjalan sejauh vt ke kanan, posisinya • y = f(x - vt). • Jika pada t = 0 f(x) = A sin (2/ )x • maka pada t =t Y = A sin (kx - t) • A = amplitudo (simpangan maksimum) • = 2/ T adalah kecepatan sudut • k = 2/ adalah bilangan gelombang • Hubungan kecepatan rambat dengan panjang gelombangnya : v = f. • 3. Laju Gelombang • Laju gelombang untuk sebuah medium tergantung pada elestisitas dan inersia medium tersebut. Jika sebuah tali teregang, elastisitasnya diukur oleh tegangan F didalam tali. Ciri inersia diukur oleh yakni massa persatuan panjang tali, maka laju gelombang tali hanya bergantung F dan .
Berdasarkan analisis dimensi didapatkan bahwa kecepatan adalah akar kuadrat dari F/ . Jadi : • v = F/ • Kecepatan untuk medium yang lain adalah : • Dalam zat cair : • Dalam zat padat : • Dalam gas : • 4. Daya dan Intensitas Gerak Gelombang • Daya didalam gerak gelombang diturunkan dari gaya pada komponen transversal tali yang diregangkan. Gaya transversal tersebut : • Ftrans = -F(y/x) • F adalah tegangan didalam tali, y/x adalah gradien dari F. B : modulus Bulk Y : modulus Young
Kecepatan transversal dari partikel di x adalah y/t yang dapat bernilai positif atau negatif. Daya yang dicurahkan oleh gaya di x, atau tenaga yang lewat melalui kedudukan x per satuan waktu didalam arah x positif adalah : • P = Ftrans u = [-F(y/x)] y/t • Misal untuk gelombang sinus y = A sin (kx - t) diperoleh : • P = A2 k F cos2 (kx - t) • Daya rata-rata yang diantarkan : • Pr = 1/T P dt • Dengan memasukan harga P didapat : • Pr = 22 Af2v • Intensitas gelombang adalah daya yang ditransmisikan melalui satu-satuan luas yang normal kepada arah perjalanan gelombang. • I =P/A A : luas • 5. Interferensi Gelombang • Interferensi merupakan efek superposisi dua atau lebih gelombang. • Superposisi adalah penambahan vektor dari pergeseran-pergeseran partikel.
Misalnya : y1 = A sin (kx - t - ) • y2 = A sin (kx - t) • Berdasarkan persamaan geometris jumlah sinud dari dua sudut diperoleh : • y = [2A cos /2]sin[kx - t - /2] • Gelombang resultas ini menyatakan sebuah gelombang baru yang sama tetapi dengan amplitudo 2A cos /2. • 6. Gelombang Tegak • Gelombang yang amplitudonya tidak sama untuk partikel yang berbeda-beda tetapi berubah dengan kedudukan x dari partikel tersebut. • Mislanya dua gelombang : • y1 = A sin (kx - t) • y2 = A sin (kx + t) • Resultannya : y = y1 + y2 • y = 2A sin kx cos t • Amplitudi gelombang tegaknya adalah 2A sin kx, mempunyai nilai maksimum sebesar 2A untuk kedudukan :
kx = /2, 3/2, 5/2, 7/2 dan seterusnya • x = /4, 3/4, 5/4, 7/4 dan seterusnya • Titik-titik ini dinamakan titik perut (antinode) • Untuk harga minimum pada kedudukan : • kx = , 2, 3, 4 dan seterusnya • x = /2, 3/2, 5/2, 7/2 dan seterusnya • Titik-titik ini dinamakan titik simpul (node) • 7. Resonansi • Resonansi terjadi bila sebuah sistem yang mampu berosilasi dipengaruhi oleh sederet denyut periodik yang sama dengan salah satu frekuensi alami dari osilasi sistem tersebut, maka sistem tersebut akan dibuat berosilasi dengan amplitudo yang cukup besar. Besar frekuensi alami dari sistem tersebut adalah : • f = [n/2l]F/ • n = 1,2,3,… • l = panjang tali = n/2
8. Gelombang Bunyi • Gelombang bunyi merupakan gelombang mekanis longitudinal • Persamaan gelombang longitudinal dinyatakan : • y = f(x - vt) atau y = A cos (kx - t) • Tekanan yang terjadi pada gelombang tersebut : • p = -B (y/x) dengan B adalah modulus lenting elastisitas. • y/x = -kAsin (kx - t) • p = BkA sin (kx - t) • Karena cepat rambat gelombangnya v = 0 diperoleh : • p = [k0 v2A] sin (kx - t) • 9. Pelayangan • Adalah variasi kenyaringan bunyi akibat amplitudo yang berubah-ubah. Hal ini terjadi bila dua buah gelombang yang frekuensinya sama berjalan sepanjang garis yang sama didalam arah-arah yang berlawanan. • Misalnya : y1 = A cos 2 f1t dan • y2 = A cos 2 f2t
Dengan prisnsip superposisi diperoleh persamaan : • y = [2A cos 2 (f1 - f2)t/2] cos 2 (f1 + f2)t/2. • fr = (f1 + f2)/2 frekuensi rata-rata • f amp = (f1 - f2)/2 frekuensi amplitudo • Pelayangan terjadi pada saat amplitudonya maksimum yaitu pada saat • cos 2 (f1- f2)t/2 harganya 1 atau -1. • 10. Efek Doppler • fp = frek. yg didengar oleh pendengar • fs = frek. dari sumber bunyi • v = cepat rambat gelombang bunyi • vp = kecepatan pendengar • vs = kecepatan sumber bunyi
11. Gelombang Elektromagnetik • Gelombang elektromagnetik telah diramalkan oleh Maxwell yang lajunya didalam ruang vacum adalah : • c = (1/00)-1/2 • Harga laju cahaya ini tidak tergantung pada frekuensi dan panjang gelombang walaupun c = f • Nilai numerik 0 = 4 x 10-7 T.m/A • 0 = 8,9 x 10-12 C2/N.m2 • sehingga dihasilkan harga c = 3,0 x 108m/s