1 / 3

DERET FOURIER Fungsi Periodik Fungsi f ( x ) dikatakan periodik dengan periode T

DERET FOURIER Fungsi Periodik Fungsi f ( x ) dikatakan periodik dengan periode T Jika f ( x  T )  f ( x ) , T = konstanta positif Contoh : 1 f ( x ) = sin x. 3  2. . . .  2 . 2 . 2. -1 Periode = 2  1 f ( x ) = sin 2 x. 3  2. .

caraf
Download Presentation

DERET FOURIER Fungsi Periodik Fungsi f ( x ) dikatakan periodik dengan periode T

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DERET FOURIER Fungsi Periodik Fungsi f ( x) dikatakan periodik dengan periode T Jika f ( x T ) f ( x) , T = konstanta positif Contoh : 1 f ( x) = sin x 3 2    2 2 2 -1 Periode = 2 1 f ( x) = sin 2x 3 2     2 2 2 1 Periode = 1 f ( x) = cos x  2 3 2   2 3 2   2 2  1 Periode = 2 Page 1 of 13 http://www.mercubuana.ac.id Kalkulus_lanjut_Modul-9

  2. Fungsi ganjil dan genap Jika dipenuhi f(-x)= -f (x) maka f (x) disebut fungsi ganjil Jika dipenuhi f(-x)= f (x) maka f (x) disebut fungsi genap Contoh : Gambar no:1 adalah fungsi ganjil Gambar no:2 adalah fungsi ganjil Gambar no:3 adalah fungsi genap Gambar no:4 adalah fungsi genap Gambar no:5 adalah fungsi ganjil Gambar no:6 adalah fungsi genap Gambar no:7 bukan fungsi ganjil atau genap Deret Fourier Misalkan f(x) terdefinisi pada interval (-L, L) dan periodik dengan periode   n1 nx L nx L a 2L ( f(x+2L)=f(x) ) maka f(x) = o 2 ) ….. (1) (αn cos  bn sin Dimana : ………….(2) n x L  I  a n L L f ( x ) cos dx L   I n x L ………….(3) L b f ( x ) sin dx  n L L    n = 0, 1, 2, … αn dan bn disebut koefisien fourier Secara umum : jika periode f(x) adalah 2 L maka : c 2 L c 2 L  a n L c  I    I n x L n x L ………….(4) ………….(5) f ( x ) cos f ( x ) sin dx dx  b n L c     n = 0, 1, 2, … Page 3 of 13 http://www.mercubuana.ac.id Kalkulus_lanjut_Modul-9

  3. Perode = 2 = 2L 2 L= Koefisien fourier : 1 2L 1 2 a0 2 L  L    = = f ( x) dx f ( x) dx   0 1 2 1 2 0    0 dx = x dx  1 1 2 2  2 x 2 ( 2 1 1 2  4 = 0 nx L nx  1 L 1  L  L    = = f ( x) cos f ( x) cos dx dx an  1  1 0   dx0 0 dx = x. cos n x dx integral parsial   1 1 1  x . n sin nx n  0  sin nx dx =   0  1 x 1  n sin nx n2 0   0  = cos nx   1 1  2 cos n 2 cos 0 1  n n 1 (cos n1) n 2 1 = = cos n = 1 (n genap) =-1 (n ganjil) =0 untuk n genap untuk n ganjil an  2 n 2 http://www.mercubuana.ac.id Page 5 of 13 Kalkulus_lanjut_Modul-9

More Related