1 / 18

Chapter 5 Vocabulary

Chapter 5 Vocabulary. Section 5.1 Vocabulary. Reciprocal Identities. Sin(u) = 1/ csc (u) cos (u) = 1/ sec(u) Csc (u) = 1/sin(u) sec(u) = 1/ cos (u) Tan(u) = 1/cot(u) cot(u) = 1/tan(u). Quotient Identities. Tan(u) = sin(u) / cos (u)

Download Presentation

Chapter 5 Vocabulary

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 5 Vocabulary

  2. Section 5.1 Vocabulary

  3. Reciprocal Identities • Sin(u) = 1/csc(u) cos(u) = 1/ sec(u) • Csc(u) = 1/sin(u) sec(u) = 1/cos(u) • Tan(u) = 1/cot(u) cot(u) = 1/tan(u)

  4. Quotient Identities • Tan(u) = sin(u) / cos(u) • Cot(u) = cos(u) / sin(u)

  5. Pythagorean Identities • Sin2 (u) + cos2 (u) = 1 • 1 + tan2(u) = sec2(u)

  6. Cofunction Identities • Sin(∏/2 – u) = cos(u) • Cos(∏/2 – u) = sin(u) • Tan(∏/2 – u) = cot(u) • Cot(∏/2 – u) = tan(u) • Sec(∏/2 – u) = csc(u) • Csc(∏/2 – u) = sec (u)

  7. Even/ Odd Idetities • Sin(-u) = -sin(u) • Csc(-u) = -csc(u) • Tan(-u) = -tan(u) • Cot(-u) = -cot(u) • Cos(-u) = cos(u) • Sec(-u) = sec(u)

  8. Section 5.2 Vocabulary

  9. Section 5.3 Vocabulary

  10. Section 5.4 Vocabulary

  11. Sum and Difference Formulas • Sin(u + v) = sin(u)cos(v) + cos(u) sin(v) • Sin(u – v) = sin(u)cos(v) – cos(u)sin(v) • Cos(u + v) = cos(u)cos(v) – sin(u) sin(v) • Cos(u – v) = cos(u) cos(v) + sin(u)sin(v) • Tan(u + v) = [tan(u) + tan(v)] / [1- tan(u)tan(v)] • Tan(u – v) = [tan(u) – tan(v)]/[1+tan(u)tan(v)]

  12. Sum and Difference formula Definition • Sum and difference formulas can be used to find exact values of trigonometric functions involving sums or differences of special angles.

  13. Section 5.5 Vocabulary

  14. Double angle Formulas • Sin(2u) = 2sin(u) cos(u) • Cos(2u) = cos2(u) – sin2(u) = 2 cos2(u) -1 = 1 – 2 sin2(u) • Tan(2u) = [2tan(u)]/[1-tan2(u)]

  15. Power reducing Formulas • sin2(u) = [1-cos(2u)]/2 • cos2(u) = [1+cos(2u)]/2 • Tan2(u) = [1-cos(2u)]/[1+cos(2u)]

  16. Half-Angle Formulas • Sin(u/2) = +/- √ [ (1-cos(u))/2] • Cos(u/2) =+/- √ [(1+cos(u))/2] • Tan(u/2) = (1-cos(u))/sin(u) = sin(u) / (1+cos(u))

  17. Product-to-sum Formulas • Sin(u)sin(v) = ½ [cos(u-v)-cos(u+v)] • Cos(u)cos(v) = ½ [cos(u-v)+cos(u+v)] • Sin(u) cos(v) = ½ [sin(u+v) + sin(u-v)] • Cos(u)sin(v) = ½ [sin(u+v)-sin(u-v)]

  18. Sum to Product formulas • Sin(u) + sin(v) = 2 sin((u+v)/2) cos((u-v)/2) • Sin(u) - sin(v) = 2cos((u+v)/2) sin((u-v)/2) • Cos(u) + cos(v) = 2cos((u+v)/2) cos((u-v)/2) • Cos(u) – cos(v) = -2sin((u+v)/2) sin((u-v)/2)

More Related