150 likes | 360 Views
PRESSURE / STRESS SENSORS Patrick PONS, Philippe MENINI 5 phD, 1 post doc 1 RECIF Engineer November 2006. INTRODUCTION. Objectives Development of silicon membrane pressure sensors for specific applications (automobile, aeronautic, medical) Pressure range Temperature range
E N D
PRESSURE / STRESS SENSORS Patrick PONS, Philippe MENINI 5 phD, 1 post doc 1 RECIF Engineer November 2006
INTRODUCTION Objectives • Development of silicon membrane pressure sensors for specific applications (automobile, aeronautic, medical) • Pressure range • Temperature range • Sensitivity / accuracy • Multisensors integration • Integration of communication circuits / wireless sensor • Development of new transduction type • Transduction • Probre integration • Packaging • Design • Technology • Developments achieved : 1980 2005 • Capacitive transduction : silicon / pyrex • Piezoresistive transduction : mono and polycristalline silicon gauges
CAPACITIVE SENSORS • 20 mm < H < H1 • 300 mm < H1 < 500 mm • 0.5 mm < H2 < 1.5 mm • 1.5 mm < D < 3 mm • 2 mm < L < 4 mm • Chip area : 5 x 5 mm2 to 7 x 7 mm2 Functional characteristics • Pressure range : 0.1 to 100 bars • Nominal capacitance : 10 to 100 pF • Full scale response (FS) : 5 to 15 % • Nonlinearity : ± 1 to ± 3 % FS • TCO : < 100 ppm / °C • TCS : 100 to 2000 ppm / °C • Temperature range : - 40 to 180 °C Pressure sensor for automobile tire : 0 / 6 bars, - 40 / 120 °C
CAPACITIVE SENSORS – Two linear range 23,6 Sp = 2 pF/bar NL = ± 1.2% FS 23,4 23,2 23,0 22,8 Capacitance (pF) 22,6 Capacitance (pF) 22,4 22,2 45 22,0 Sp = 2.3 pF/bar NL = ± 1.7% FS 44 21,8 43 21,6 42 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 41 Pressure (bar) Pressure (bar) 40 39 38 37 36 4,0 4,5 5,0 5,5 6,0 6,5 7,0 7,5 110 Mohamad Al Bahri (Oct 2000 / May 2005) 100 90 Fouad Kerrour May 2006 / Oct 2007 PhD Univ. Constantine 80 70 Capacitance (pF) 60 50 40 30 20 0 2 4 6 8 10 12 14 16 18 Pressure (bar)
CAPACITIVE SENSORS - Thermal drift in circular cavity Electrode thickness = 0,8 µm (Al) 220 210 G F E D C B A 200 g f e d c b a 190 180 TC[C(0,T)] (ppm/°C) 170 300 7 6 5 4 160 3 2 1 200 150 TC[Sp]fr=2TC[Co] -2TC[fr] 100 140 0 130 Electrode thickness = 0,1µm (Al) -100 120 -200 110 -300 100 -400 90 TC[Sp(T)] (ppm/°C) Température (°C) -500 80 -30 0 30 60 90 120 150 -600 -700 -800 -900 -1000 TC[Sp]Sv=TC[Sv] -2TC[Co] -1100 -1200 -30 0 30 60 90 120 150 Temperature (°C) Top view Bottom view Offset : α(Pyrex-Alu) Sensitivity : α(Pyrex-Si) Mohamad Al Bahri (Oct 2000 / May 2005) Membrane thickness (h) : 26 µm to 45 µm Fouad Kerrour May 2006 / Oct 2007 PhD Univ. Constantine Resonant frequency : α(Pyrex-Si) Membrane thickness (h) : 26 µm to 45 µm
PIEZORESISTIVE SENSORS Stress gauges R2 R1 H Va Vs Silicon R3 R4 L Wheatstone bridge 10 mm < H < qq 100 mm qq 100 µm < L < qq mm Chip area : 1 mm2 to several 10 mm2 Functionnal characteristics - Pressure range : 0.1 to 100 bars - Bridge resistance : 1 to 3 k - Full scale response (FS) : 0.5 to 3 % Va - Nonlinearity : < ± 1 % FS - Nominal Offset : < 1 % Va - TCO : 5 to 100 ppm / °C - TCS : 1000 to 2500 ppm / °C - Temperature range : - 40 to 125 °C (400°C)
PIEZORESISTIVE SENSORS 1.5 mm High temperature sensor for aeronautic application - SOI wafer - Temperature range : - 40 à 400 °C - Pressure range : 0.1 à 10 bars - Offset : 0.1 % de la tension d’alimentation - Sensitivity : 2 mV/V/bar - TCS : 1200 ppm / °C 2001 :Industrial transfer (Auxitrol) Miniature sensor for medicalapplication (intracranial) - Temperature range : 20 à 45 °C - Pressure range : - 80 à 400 mbars - Offset : 0.1 % de la tension d’alimentation - Sensitivity : 5 µV/V/mbar - TCO : 0.2 mbar / °C Validation phase (HEMODIA) Mohamad Al Bahri Post doc (Dec 2005 – Dec 2006)
EFFECT OF GAUGE LENGHT (L) AND POSITION ON PIEZORESISTIVE SENSOR SENSITIVITY 150 160 170 180 190 200 210 Membrane position X axis (µm) L = 100 L = 60 L = 80 L = 40 L = 2 R/R (%)
EFFECT OF NON IDEAL CLAMPED MEMBRANE ON PIEZORESISTIVE SENSOR Rotation at anchorage y Silicon die Silicon membrane x x - y MPa Clamped membrane Clamped die Clamped membrane Clamped die X axis (µm)
EFFECT OF NON IDEAL CLAMPED SILICON DIE ON PIEZORESISTIVE SENSOR Silicon die Silicone joint Sensor deformation under pressure 500 µm • Silicone joint deformation • No significant effects on sensor sensitivity
MINIATURE TELEMETRIC PIEZORESISTIVE PESSURE SENSOR WITH IN SITU SELF-CALIBRATION • Framework • ANR project (Dec 06 / Dec 09) • Partners : HEMODIA, INSERM, Toulouse Hospital, Epsilon • Regional project (submitted) • Joint Laboratory with HEMODIA (submitted) • Applications : Intracranial and Intravascular pressure sensor • Objectives • Sensor miniaturization : local measurement, reduce probe traumatism • Die width < 500µm • Membrane thickness 1µm (SOI) • Implanted gauge thickness 0.1µm, Gauge width < 1µm • In situ-autocalibration : eliminate external calibration (reduce infection risks) • SOI / Pyrex technology • Integration of electrostatic pressure generator • Integration of high stability voltage source (INSERM) • Sensor integration into the probe (stress assembly, bio-compatibility) • Telemetric output (INSERM) : eliminate external cable Michal Olszacki Oct 2005 / Nov 2008 PhD Lodtz Univ. grant Mohamad Al Bahri Dec 2006 / Dec 2009 Post doc ANR Cesary Maj Oct 2005 / Nov 2008 PhD Lodtz Univ grant. Pierre Yameogo Janv 2007 / Dec 2009) PhD CIFRE HEMODIA
WIRELESS PASSIVE PRESSURE SENSOR S21 (dB) RF transduction : resonance frequency modification of planar resonator Mehdi Jatlaoui Oct 2005 / Dec 2008 PhD Tunisia grant MINC collaboration (Hervé Aubert) P • Example of 30GHz resonator • Others frequency possible (resonator design) • Frequency : Size • Very high sensitivity to pressure Aerospace Valley project (submitted) : Sept 07 / Sept 10
COLLECTIVE PACKAGING FOR PRESSURE SENSOR Framework : Auxitrol collaboration (Oct 06 / Oct 09) Jean François Le Néal Nov 2006 / Oct 2009 PhD CIFRE AUXITROL • Objectives : • Oil suppression (increase temperature range, reduce drift) • Collective process : reduce costs • Studies • Cap assembly • Pyrex, silicon • Anodic bonding, thermocompression, eutectic bonding • Surface micromaching • Polymer sacrificial layers • Thick dielectric cap layers
SUPERCRITICAL CO2 FOR MEMS APPLICATION • Framework : - Regional project (Oct 06 / Oct 08) - RECIF collaboration - Joint Laboratory with RECIF ? Laurent Rabbia – Vincent Perrut RECIF Engineer ?????? Oct 2007 / Sept 2010 PhD CIFRE RECIF ? • Objectives : Use of supercritical CO2 properties (low interfacial tension) • Wet etching of polymer sacrificial layer and C02 drying in the same chamber • Complete micromachining under supercritical state • Surface conditionning with Self Assembled Monolayer into CO2 • Applications • MEMS release • Packaging release • Microfluidics
POSSIBLE NEW PROJECTS • Integration of pressure sensors with chemical sensors (FET gauge) • Stress sensors for buried pipes (Veolia) • Stress sensors for satellite (Astrium / Regional project submitted) • Wireless stress network • MINC collaboration