1 / 15

PRESSURE / STRESS SENSORS Patrick PONS, Philippe MENINI 5 phD, 1 post doc 1 RECIF Engineer

PRESSURE / STRESS SENSORS Patrick PONS, Philippe MENINI 5 phD, 1 post doc 1 RECIF Engineer November 2006. INTRODUCTION.  Objectives Development of silicon membrane pressure sensors for specific applications (automobile, aeronautic, medical) Pressure range Temperature range

carla-reed
Download Presentation

PRESSURE / STRESS SENSORS Patrick PONS, Philippe MENINI 5 phD, 1 post doc 1 RECIF Engineer

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PRESSURE / STRESS SENSORS Patrick PONS, Philippe MENINI 5 phD, 1 post doc 1 RECIF Engineer November 2006

  2. INTRODUCTION  Objectives • Development of silicon membrane pressure sensors for specific applications (automobile, aeronautic, medical) • Pressure range • Temperature range • Sensitivity / accuracy • Multisensors integration • Integration of communication circuits / wireless sensor • Development of new transduction type • Transduction • Probre integration • Packaging • Design • Technology • Developments achieved : 1980  2005 • Capacitive transduction : silicon / pyrex • Piezoresistive transduction : mono and polycristalline silicon gauges

  3. CAPACITIVE SENSORS • 20 mm < H < H1 • 300 mm < H1 < 500 mm • 0.5 mm < H2 < 1.5 mm • 1.5 mm < D < 3 mm • 2 mm < L < 4 mm • Chip area : 5 x 5 mm2 to 7 x 7 mm2 Functional characteristics • Pressure range : 0.1 to 100 bars • Nominal capacitance : 10 to 100 pF • Full scale response (FS) : 5 to 15 % • Nonlinearity : ± 1 to ± 3 % FS • TCO : < 100 ppm / °C • TCS : 100 to 2000 ppm / °C • Temperature range : - 40 to 180 °C Pressure sensor for automobile tire : 0 / 6 bars, - 40 / 120 °C

  4. CAPACITIVE SENSORS – Two linear range 23,6 Sp = 2 pF/bar NL = ± 1.2% FS 23,4 23,2 23,0 22,8 Capacitance (pF) 22,6 Capacitance (pF) 22,4 22,2 45 22,0 Sp = 2.3 pF/bar NL = ± 1.7% FS 44 21,8 43 21,6 42 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 41 Pressure (bar) Pressure (bar) 40 39 38 37 36 4,0 4,5 5,0 5,5 6,0 6,5 7,0 7,5 110 Mohamad Al Bahri (Oct 2000 / May 2005) 100 90 Fouad Kerrour May 2006 / Oct 2007 PhD Univ. Constantine 80 70 Capacitance (pF) 60 50 40 30 20 0 2 4 6 8 10 12 14 16 18 Pressure (bar)

  5. CAPACITIVE SENSORS - Thermal drift in circular cavity Electrode thickness = 0,8 µm (Al) 220 210 G F E D C B A 200 g f e d c b a 190 180 TC[C(0,T)] (ppm/°C) 170 300 7 6 5 4 160 3 2 1 200 150 TC[Sp]fr=2TC[Co] -2TC[fr] 100 140 0 130 Electrode thickness = 0,1µm (Al) -100 120 -200 110 -300 100 -400 90 TC[Sp(T)] (ppm/°C) Température (°C) -500 80 -30 0 30 60 90 120 150 -600 -700 -800 -900 -1000 TC[Sp]Sv=TC[Sv] -2TC[Co] -1100 -1200 -30 0 30 60 90 120 150 Temperature (°C) Top view Bottom view Offset : α(Pyrex-Alu) Sensitivity : α(Pyrex-Si) Mohamad Al Bahri (Oct 2000 / May 2005) Membrane thickness (h) : 26 µm to 45 µm Fouad Kerrour May 2006 / Oct 2007 PhD Univ. Constantine Resonant frequency : α(Pyrex-Si) Membrane thickness (h) : 26 µm to 45 µm

  6. PIEZORESISTIVE SENSORS Stress gauges R2 R1 H Va Vs Silicon R3 R4 L Wheatstone bridge 10 mm < H < qq 100 mm qq 100 µm < L < qq mm Chip area : 1 mm2 to several 10 mm2 Functionnal characteristics - Pressure range : 0.1 to 100 bars - Bridge resistance : 1 to 3 k - Full scale response (FS) : 0.5 to 3 % Va - Nonlinearity : < ± 1 % FS - Nominal Offset : < 1 % Va - TCO : 5 to 100 ppm / °C - TCS : 1000 to 2500 ppm / °C - Temperature range : - 40 to 125 °C (400°C)

  7. PIEZORESISTIVE SENSORS 1.5 mm  High temperature sensor for aeronautic application - SOI wafer - Temperature range : - 40 à 400 °C - Pressure range : 0.1 à 10 bars - Offset : 0.1 % de la tension d’alimentation - Sensitivity : 2 mV/V/bar - TCS : 1200 ppm / °C  2001 :Industrial transfer (Auxitrol)  Miniature sensor for medicalapplication (intracranial) - Temperature range : 20 à 45 °C - Pressure range : - 80 à 400 mbars - Offset : 0.1 % de la tension d’alimentation - Sensitivity : 5 µV/V/mbar - TCO : 0.2 mbar / °C  Validation phase (HEMODIA) Mohamad Al Bahri Post doc (Dec 2005 – Dec 2006)

  8. EFFECT OF GAUGE LENGHT (L) AND POSITION ON PIEZORESISTIVE SENSOR SENSITIVITY 150 160 170 180 190 200 210 Membrane position X axis (µm) L = 100 L = 60 L = 80 L = 40 L = 2 R/R (%)

  9. EFFECT OF NON IDEAL CLAMPED MEMBRANE ON PIEZORESISTIVE SENSOR Rotation at anchorage y Silicon die Silicon membrane x x - y MPa Clamped membrane Clamped die Clamped membrane Clamped die X axis (µm)

  10. EFFECT OF NON IDEAL CLAMPED SILICON DIE ON PIEZORESISTIVE SENSOR Silicon die Silicone joint Sensor deformation under pressure 500 µm • Silicone joint deformation • No significant effects on sensor sensitivity

  11. MINIATURE TELEMETRIC PIEZORESISTIVE PESSURE SENSOR WITH IN SITU SELF-CALIBRATION • Framework • ANR project (Dec 06 / Dec 09) • Partners : HEMODIA, INSERM, Toulouse Hospital, Epsilon • Regional project (submitted) • Joint Laboratory with HEMODIA (submitted) • Applications : Intracranial and Intravascular pressure sensor • Objectives • Sensor miniaturization : local measurement, reduce probe traumatism •  Die width < 500µm • Membrane thickness 1µm (SOI) • Implanted gauge thickness 0.1µm, Gauge width < 1µm • In situ-autocalibration : eliminate external calibration (reduce infection risks) • SOI / Pyrex technology • Integration of electrostatic pressure generator • Integration of high stability voltage source (INSERM) • Sensor integration into the probe (stress assembly, bio-compatibility) • Telemetric output (INSERM) : eliminate external cable Michal Olszacki Oct 2005 / Nov 2008 PhD Lodtz Univ. grant Mohamad Al Bahri Dec 2006 / Dec 2009 Post doc ANR Cesary Maj Oct 2005 / Nov 2008 PhD Lodtz Univ grant. Pierre Yameogo Janv 2007 / Dec 2009) PhD CIFRE HEMODIA

  12. WIRELESS PASSIVE PRESSURE SENSOR S21 (dB)  RF transduction : resonance frequency modification of planar resonator Mehdi Jatlaoui Oct 2005 / Dec 2008 PhD Tunisia grant MINC collaboration (Hervé Aubert) P  • Example of 30GHz resonator • Others frequency possible (resonator design) • Frequency  : Size  • Very high sensitivity to pressure  Aerospace Valley project (submitted) : Sept 07 / Sept 10

  13. COLLECTIVE PACKAGING FOR PRESSURE SENSOR  Framework : Auxitrol collaboration (Oct 06 / Oct 09) Jean François Le Néal Nov 2006 / Oct 2009 PhD CIFRE AUXITROL • Objectives : • Oil suppression (increase temperature range, reduce drift) • Collective process : reduce costs • Studies • Cap assembly • Pyrex, silicon • Anodic bonding, thermocompression, eutectic bonding • Surface micromaching • Polymer sacrificial layers • Thick dielectric cap layers

  14. SUPERCRITICAL CO2 FOR MEMS APPLICATION • Framework : - Regional project (Oct 06 / Oct 08) - RECIF collaboration - Joint Laboratory with RECIF ? Laurent Rabbia – Vincent Perrut RECIF Engineer ?????? Oct 2007 / Sept 2010 PhD CIFRE RECIF ? • Objectives : Use of supercritical CO2 properties (low interfacial tension) • Wet etching of polymer sacrificial layer and C02 drying in the same chamber • Complete micromachining under supercritical state • Surface conditionning with Self Assembled Monolayer into CO2 • Applications • MEMS release • Packaging release • Microfluidics

  15. POSSIBLE NEW PROJECTS • Integration of pressure sensors with chemical sensors (FET gauge) • Stress sensors for buried pipes (Veolia) • Stress sensors for satellite (Astrium / Regional project submitted) • Wireless stress network • MINC collaboration

More Related