1 / 31

Kuliah Rangkaian Digital Kuliah 6: Blok Pembangun Logika Kombinasional

Kuliah Rangkaian Digital Kuliah 6: Blok Pembangun Logika Kombinasional. Teknik Komputer Universitas Gunadarma. Topic #6 – Combinational Logic Building Blocks. Tri-state buffers XOR & XNOR Decoders Encoders Multiplexers Demultiplexers. EN. A.

carolbrown
Download Presentation

Kuliah Rangkaian Digital Kuliah 6: Blok Pembangun Logika Kombinasional

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kuliah Rangkaian Digital Kuliah 6: Blok Pembangun Logika Kombinasional Teknik Komputer Universitas Gunadarma

  2. Topic #6 – Combinational Logic Building Blocks • Tri-state buffers • XOR & XNOR • Decoders • Encoders • Multiplexers • Demultiplexers

  3. EN A • Can tie multiple outputs together  one at a time is driven A·EN’+B·EN B Tri/Three-state buffers • Outputs: 0, 1, or Hi-Z (high impedance) CMOS transmission gate Hi-Z  Don’t care

  4. 2-input XOR gates • True if and only if the two inputs are different • XNOR: complement of XOR • May be used as comparator

  5. XOR and XNOR symbols • Why are they equivalent?

  6. Gate-level XOR circuits • Can we make it using only NAND gates?

  7. CMOS XOR with transmission gates IF B==1 THEN Z = !A; ELSE Z = A;

  8. Parity computation – to detect single bit error Multi-input XOR? • What is X  Y  Z = ? • X’ · Y · Z + X · Y’ · Z + X · Y · Z’ + X’ · Y’ · Z’ • TRUE if odd number of inputs are TRUE • Associativity for XOR, just like AND & OR?

  9. Parity tree • Faster with balanced tree structure

  10. Decoders • Convert m-bit coded inputs into n-bit outputs • Typically m<n • E.g., n-to-2n, BCD decoders • Enable: prevent changes in output due to undesired changes in input

  11. a f b g e c d BCD decoder EN D C B A a b c d e f g 0 x x x x 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 0 x x x x x x x 1 1 0 1 1 x x x x x x x 1 1 1 0 0 x x x x x x x 1 1 1 0 1 x x x x x x x 1 1 1 1 0 x x x x x x x 1 1 1 1 1 x x x x x x x • 4-bit input indicates the number to display, and thus control the on/off of the 7 segments. • Recall K-map minimization with Don’t cares …

  12. Binary n-to-2n decoders • The kth output is 1 if the n-bit input has binary value of k • Ex: 2-to-4 decoder

  13. 2-to-4-decoder logic diagram

  14. F0 = x'y'z' F1 = x'y'z F2 = x'yz' F3 = x'yz F4 = xy'z' F5 = xy'z F6 = xyz' F7 = xyz x y z 3-to-8 binary decoders F0 F1 F2 F3 F4 F5 F6 F7 X 3-to-8 Decoder Y Z

  15. Cin A B C S 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 3-to-8 Decoder 0 1 2 3 4 5 6 7 1 0 0 0 1 S 1 0 1 1 0 1 1 0 1 0 Cin S2 S1 S0 1 1 1 1 1 A C B Realizing digital logic using decoders • Idea: • Canonical sum (of minterms) = decoder outputs connect to OR gate • Good and simple implementation when the circuit has many outputs each has few minterms • Example: Full adder • S(Cin, A, B) = S (1,2,4,7) • C(Cin, A, B) = S (3,5,6,7)

  16. Decoder Encoder Encoders (vs. decoders) • m inputs, n outputs, m>n • Ex: 2n–to-n binary encoder

  17. Inputs Outputs I I I I I I I I y2 y1 y2 0 1 2 3 4 5 6 7 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 I0 I1 I2 I3 I4 I5 I6 I7 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 Y2 = I4 + I5 + I6 + I7 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0 y1 = I2 + I3 + I6 + I7 0 0 0 0 0 0 0 1 1 1 1 Y0 = I1 + I3 + I5 + I7 8-to-3 encoder example What if all Ik=0?

  18. Multiplexers • Digital switches that select one of the n b-bit data as the output

  19. 2-input multiplexer using CMOS transmission gates

  20. Inputs Inputs I0 0 1 2 3 I0 4:1 MUX I1 I1 I2 mux Y Y Output I2 I3 I3 S1 S0 S1 S0 select select 4-to-1 multiplexer

  21. I0 I0 I1 I1 Y Y I2 I2 I3 I3 0 1 2 3 2-to-4 Decoder S1 S0 S1 S0 4-to-1 Mux circuit diagram

  22. I0 I1 I2 I3 4:1 MUX 2:1 MUX S1 S0 Y I4 I5 I6 I7 4:1 MUX S2 S1 S0 Larger multiplexers • Can be constructed using smaller ones … • Ex: 8=to-1 Mux

  23. 16-to-1 multiplexer

  24. MSI multiplexer example 74151A 8-to-1 multiplexer

  25. b bits b bits n outputs Demux . . Data Input b bits Output Inputs s bits Mux Select Select Demultiplexers • Digital switches that connect the input to one of n outputs • Typically n = 2s

  26. Y0 = D·S1'·S0' 2x4 Decoder Outputs S1 S0 Y1 = D·S1'·S0 Y0 = D·S1'·S0' Y2 = D·S1·S0' Y1 = D·S1'·S0 E Y3 = D·S1·S0 Data D Demux Y2 = D.S1·S0' D Y3 = D.S1·S0 S1 S0 select 1-to-4 demultiplexer • Implementing n-output b-bit Demux using b n-output Decoders • Connecting data bits to enables • Can we do it for Mux using Encoder?

  27. Mux-Demux application example • Enables number of sources and destinations sharing a single communication channel

  28. 0 1 0 1 0 1 1 0 0 1 2 3 4 5 6 7 F Mux Data Input Lines mux Mux Select Lines X Y Z Implementing n-variable func. using 2n-to-1 Mux • Methodology: • Express function in canonical sum form • Connect the n input variables to the Mux select lines, • For each Mux data input line Ii ( 0 £ i £ 2n – 1 ): • Connect 1 to Ii if i is a minterm of the function, • Otherwise, connect 0 to Ii. • Ex: F(X,Y,Z) = S(1,3,5,6)

  29. 1 0 0 1 2 3 Value of X·Y Mux X Y Z F F Output Z Mux 0 0 0 1 1 0 0 0 1 1 0 1 0 0 1 Z 0 1 1 1 X Y 1 0 0 0 0 2 1 0 1 0 1 1 0 1 Z’ 3 1 1 1 0 Implementing n-variable func. using 2n-1-to-1 Mux • Idea: • Use only n-1 variables at the select lines • Connect the last one and its inverse to the input lines • Ex: F(X,Y,Z) = S(0,1,3,6) Mux Data Input Lines Mux Select Lines

  30. Another example • F(x1,x2,x3,x4) = (0,1,2,3,4,9,13,14,15) using a 8-to-1 Mux (74151A) and an inverter.

  31. Implementing n-variable func. using 2n-1-to-1 Mux • Express function F in canonical sum form • Choose n-1 variables connecting to mux select lines • Construct the truth table via grouping inputs based on select line values • Determine multiplexer input line i values by comparing the last input variable X and F: • Four possible mux input line i values: • 0 if F=0 regardless of the value of X • 1 if F=1 regardless of the value of X • F=X • F=X’

More Related