210 likes | 383 Views
Deep Video Quality Assessor: From Spatio-temporal Visual Sensitivity to A convolutional Neural Aggregation Network. Woojae Kim 1 , Jongyoo Kim 2 , Sewoong Ahn 1 ,Jinwoo Kim 1 , and Sanghoon Lee 1 1 Department of Electrical and Electronic Engineering, Yonsei University
E N D
Deep Video Quality Assessor: From Spatio-temporal Visual Sensitivity to A convolutional Neural Aggregation Network Woojae Kim1, Jongyoo Kim2, Sewoong Ahn1,Jinwoo Kim1, and Sanghoon Lee1 1Department of Electrical and Electronic Engineering, Yonsei University 2Microsoft Research, Beijing, China Yuwen Li
Motivations • Temporal motion effect: i)temporal masking effect; ii)a severe error in the motion map makes spatial errors more visible to humans Yuwen Li
Motivations • Temporal memory for quality judgment Yuwen Li
Contributions • A Deep Video Quality Assessor (DeepVQA) to predict the spatio-temporal sensitivity map • A Convolutional Neural Aggregation Network (CHAN) borrowing an idea from an 'attention mechanism' Yuwen Li
Related Works • Spatio-temporal Visual Sensitivity: i)A spatio temporal contrast sensitivity function (CSF) ii)A natural video statistics (NVS) theory iii)Existing attempts using deep learning failed to consider motion properties. • Temporal Pooling: i)Average pooling ii)Adaptively pool the temporal scores from the HVS perspective iii)'Neural Aggregation Network for Video Face Recognition' (CVPR2017) Yuwen Li
Framework Yuwen Li
Framework-Step 1 • Input: Distorted frame: normalized after subtracting the lowpass filtered frames Spatial Error map: Yuwen Li
Framework-Step 1 • Input: Frame Difference map: Temporal Error map: Yuwen Li
Framework-Step 1 • Intermediate output: Spatio-temporal Sensitivity map: Yuwen Li
Framework-Step 1 • Intermediate output: Perceptual Error map: Yuwen Li
Framework-Step 1 Yuwen Li
Framework-Step 2 Yuwen Li
Experiments Yuwen Li
Experiments Yuwen Li
Experiments Yuwen Li
Experiments Yuwen Li
Experiments Yuwen Li
Experiments Yuwen Li
Experiments Yuwen Li
Conclusion • +How to tell a good story • -Act like an integration of their previous work • -Generalization ability • -Hard to transform to NR-VQA Yuwen Li
References • Yang, J., Ren, P., Zhang, D., Chen, D., Wen, F., Li, H., Hua, G., Yang, J., Li, H.,Dai, Y., et al.: Neural aggregation network for video face recognition. In: Proc.IEEE Conf. Comput. Vis. Pattern Recognit.(CVPR). 2492–2495 • Kim, J., Lee, S.: Deep learning of human visual sensitivity in image quality assessment framework. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.(CVPR).(2017) Yuwen Li