1 / 22

Infrastructure Side Data Fusion Tobias Schendzielorz (TUM) Paul Mathias (Siemens)

Infrastructure Side Data Fusion Tobias Schendzielorz (TUM) Paul Mathias (Siemens). SAFESPOT. Munich University of Technology Chair of Traffic Engineering and Control. www.vt.bv.tum.de. Lecturing and Research in Public and Private Transport. Univ.-Prof. Dr.-Ing. Fritz Busch.

Download Presentation

Infrastructure Side Data Fusion Tobias Schendzielorz (TUM) Paul Mathias (Siemens)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Infrastructure Side Data Fusion Tobias Schendzielorz (TUM) Paul Mathias (Siemens) SAFESPOT

  2. Munich University of TechnologyChair of Traffic Engineering and Control www.vt.bv.tum.de Lecturing and Research in Public and Private Transport Univ.-Prof. Dr.-Ing. Fritz Busch Munich University of Technology Chair of Traffic Engineering and Control Arcisstr. 21 D-80333 München Email: info@vt.bv.tum.de

  3. Organization Chart Munich University of Technology Faculty of Civil Engineering and Geodesy Institute of TransportationChairmen:Univ.-Prof. Dr.-Ing. F. Busch Univ.-Prof. Dr.-Ing. G. Leykauf • Chair of Traffic Engineering and Control • Department of Urban Planning and Development • Institute of Road, Railway and Airfield Construction

  4. TUM-VT – Staff

  5. Dinner on Monday Evening

  6. Meeting Agenda Monday

  7. Meeting Agenda Tuesday

  8. SP2 RSU System: Functional Architecture Message Generator LDM VANET Messages Q-API Q- / T-API Q- / T-API SP2 - Data Fusion SP5 Application Manoeuvre Estimator Dynamic Black Spot Recognition EnvironmentalConsolidator Traffic Information Consolidator Gatetway to Traffic Light Controller Object Refinement EnvironmentalEvent Recognition Traffic Data Calculator CCTV for Positioning (Preprocessing Unit) Central Level Fusion Thermal Camera f. Living Objects (Preprocessing Unit) Object Matcher Data Receiver ECAID NIR Camera for Ice Detection (Sensor and Preprocessing Unit) Situation Refinement Map Matcher RFID for Ghost Driver Detection (Preprocessing Unit) Wireless Sensor Network (Preprocessing Unit) Sensor Level Fusion Cooperative Pre-Data Fusion Gateway to Safety Centre Gateway to Traffic Control Centre IBEO Specific 20.02.2008 CCTV for Visibility (Preprocessing unit) Laserscanner (Infrastructure Sensor) Message Router (VANET)

  9. SP2 RSU System: Functional Architecture Message Generator LDM VANET Messages Q-API Q- / T-API Q- / T-API SP2 - Data Fusion SP5 Application SP5 Manoeuvre Estimator Dynamic Black Spot Recognition EnvironmentalConsolidator Traffic Information Consolidator under discussion TUM Gatetway to Traffic Light Controller SODIT LCPC PTV SIE Object Refinement EnvironmentalEvent Recognition Traffic Data Calculator CCTV for Positioning (Preprocessing Unit) CIDAUT PTV TUM Central Level Fusion Thermal Camera f. Living Objects (Preprocessing Unit) Object Matcher VTT Data Receiver TUM ECAID NIR Camera for Ice Detection (Sensor and Preprocessing Unit) CSST VTT Situation Refinement Map Matcher TUM RFID for Ghost Driver Detection (Preprocessing Unit) BME Wireless Sensor Network (Preprocessing Unit) Sensor Level Fusion MIZAR Cooperative Pre-Data Fusion Gateway to Safety Centre IBEO PTV Gateway to Traffic Control Centre TUM/MIZAR IBEO Specific Test Sites??? 20.02.2008 CCTV for Visibility (Preprocessing unit) LCPC Laserscanner (Infrastructure Sensor) Message Router (VANET)

  10. SAFESPOT RSU System - Motorway 20.02.2008 Message Generator LDM VANET Messages Q-API Q- / T-API Q- / T-API SP2 - Data Fusion SP5 Application Manoeuvre Estimator Dynamic Black Spot Recognition EnvironmentalConsolidator Traffic Information Consolidator Gatetway to Traffic Light Controller Object Refinement CCTV for Positioning (Preprocessing Unit)‏ EnvironmentalEvent Recognition Traffic Data Calculator Central Level Fusion Thermal Camera f. Living Objects (Preprocessing Unit)‏ Object Matcher Data Receiver NIR Camera for Ice Detection (Sensor and Preprocessing Unit)‏ Map Matcher ECAID RFID for Ghost Driver Detection (Preprocessing Unit)‏ Situation Refinement Wireless Sensor Network (Preprocessing Unit)‏ Sensor Level Fusion Cooperative Pre-Data Fusion Gateway to Safety Centre Gateway to Traffic Control Centre IBEO Specific CCTV for Visibility (Preprocessing unit)‏ Message Router (VANET)‏ Laserscanner (Infrastructure Sensor)‏

  11. SAFESPOT RSU System - Urban 20.02.2008 Message Generator LDM VANET Messages Q-API Q- / T-API Q- / T-API SP2 - Data Fusion SP5 Application Manoeuvre Estimator Dynamic Black Spot Recognition EnvironmentalConsolidator Traffic Information Consolidator Gatetway to Traffic Light Controller Object Refinement CCTV for Positioning (Preprocessing Unit)‏ EnvironmentalEvent Recognition Traffic Data Calculator Central Level Fusion Thermal Camera f. Living Objects (Preprocessing Unit)‏ Object Matcher Data Receiver NIR Camera for Ice Detection (Sensor and Preprocessing Unit)‏ Map Matcher ECAID RFID for Ghost Driver Detection (Preprocessing Unit)‏ Situation Refinement Wireless Sensor Network (Preprocessing Unit)‏ Sensor Level Fusion Cooperative Pre-Data Fusion Gateway to Safety Centre Gateway to Traffic Control Centre IBEO Specific CCTV for Visibility (Preprocessing unit)‏ Message Router (VANET)‏ Laserscanner (Infrastructure Sensor)‏

  12. SAFESPOT RSU System – Inter-Urban / Rural System 20.02.2008 Message Generator LDM VANET Messages Q-API Q- / T-API Q- / T-API SP2 - Data Fusion SP5 Application Manoeuvre Estimator Dynamic Black Spot Recognition EnvironmentalConsolidator Traffic Information Consolidator Gatetway to Traffic Light Controller Object Refinement CCTV for Positioning (Preprocessing Unit)‏ EnvironmentalEvent Recognition Traffic Data Calculator Central Level Fusion Thermal Camera f. Living Objects (Preprocessing Unit)‏ Object Matcher Data Receiver NIR Camera for Ice Detection (Sensor and Preprocessing Unit)‏ Map Matcher ECAID RFID for Ghost Driver Detection (Preprocessing Unit)‏ Situation Refinement Wireless Sensor Network (Preprocessing Unit)‏ Sensor Level Fusion Cooperative Pre-Data Fusion Gateway to Safety Centre Gateway to Traffic Control Centre IBEO Specific CCTV for Visibility (Preprocessing unit)‏ Message Router (VANET)‏ Laserscanner (Infrastructure Sensor)‏

  13. SAFESPOT RSU System – Core System 20.02.2008 Message Generator LDM VANET Messages Q-API Q- / T-API Q- / T-API SP2 - Data Fusion SP5 Application Manoeuvre Estimator Dynamic Black Spot Recognition EnvironmentalConsolidator Traffic Information Consolidator Gatetway to Traffic Light Controller Object Refinement CCTV for Positioning (Preprocessing Unit) EnvironmentalEvent Recognition Traffic Data Calculator Central Level Fusion Thermal Camera f. Living Objects (Preprocessing Unit) Object Matcher Data Receiver NIR Camera for Ice Detection (Sensor and Preprocessing Unit) Map Matcher ECAID RFID for Ghost Driver Detection (Preprocessing Unit) Situation Refinement Wireless Sensor Network (Preprocessing Unit) Sensor Level Fusion Cooperative Pre-Data Fusion Gateway to Safety Centre Gateway to Traffic Control Centre IBEO Specific CCTV for Visibility (Preprocessing unit) Message Router (VANET) Laserscanner (Infrastructure Sensor)

  14. SAFESPOT RSU System - Motorway A16 (NL) 20.02.2008 Message Generator LDM VANET Messages Q-API Q- / T-API Q- / T-API SP2 - Data Fusion SP5 Application Manoeuvre Estimator Dynamic Black Spot Recognition EnvironmentalConsolidator Traffic Information Consolidator under discussion Gatetway to Traffic Light Controller Object Refinement CCTV for Positioning (Preprocessing Unit) EnvironmentalEvent Recognition Traffic Data Calculator Central Level Fusion Thermal Camera f. Living Objects (Preprocessing Unit) Object Matcher Data Receiver NIR Camera for Ice Detection (Sensor and Preprocessing Unit) Map Matcher ECAID Detected fog + location Detected slippery conditions + location Detected road obstruction + location RFID for Ghost Driver Detection (Preprocessing Unit) Situation Refinement Wireless Sensor Network (Preprocessing Unit) Sensor Level Fusion Cooperative Pre-Data Fusion Gateway to Motorway management system Gateway to Traffic Control Centre IBEO Specific CCTV for Visibility (Preprocessing unit) Message Router (VANET) Laserscanner (Infrastructure Sensor)

  15. SAFESPOT RSU System - Rural Road N629 (NL) 20.02.2008 Message Generator LDM VANET Messages Q-API Q- / T-API Q- / T-API SP2 - Data Fusion SP5 Application Manoeuvre Estimator Dynamic Black Spot Recognition EnvironmentalConsolidator Traffic Information Consolidator under discussion Gatetway to Traffic Light Controller Object Refinement CCTV for Positioning (Preprocessing Unit) EnvironmentalEvent Recognition Traffic Data Calculator Central Level Fusion Thermal Camera f. Living Objects (Preprocessing Unit) Object Matcher Data Receiver NIR Camera for Ice Detection (Sensor and Preprocessing Unit) Map Matcher ECAID RFID for Ghost Driver Detection (Preprocessing Unit) Situation Refinement Wireless Sensor Network (Preprocessing Unit) Sensor Level Fusion Dynamic speed advice + location Cooperative Pre-Data Fusion Gateway to Safety Centre Gateway to Traffic Control Centre IBEO Specific CCTV for Visibility (Preprocessing unit) Message Router (VANET) Laserscanner (Infrastructure Sensor)

  16. SAFESPOT RSU System - Urban Helmond 20.02.2008 Message Generator LDM VANET Messages Q-API Q- / T-API Q- / T-API SP2 - Data Fusion SP5 Application Manoeuvre Estimator Dynamic Black Spot Recognition EnvironmentalConsolidator Traffic Information Consolidator under discussion Gatetway to Traffic Light Controller Object Refinement CCTV for Positioning (Preprocessing Unit) EnvironmentalEvent Recognition Traffic Data Calculator Central Level Fusion Thermal Camera f. Living Objects (Preprocessing Unit) Object Matcher Data Receiver NIR Camera for Ice Detection (Sensor and Preprocessing Unit) Map Matcher ECAID RFID for Ghost Driver Detection (Preprocessing Unit) Situation Refinement Wireless Sensor Network (Preprocessing Unit) Sensor Level Fusion Cooperative Pre-Data Fusion Gateway to Safety Centre Gateway to Traffic Control Centre IBEO Specific CCTV for Visibility (Preprocessing unit) Message Router (VANET) Laserscanner (Infrastructure Sensor)

  17. Message Generator LDM VANET Messages Q-API Q- / T-API Q- / T-API SP2 - Data Fusion 12 SP5 Application SP5 Manoeuvre Estimator Dynamic Black Spot Recognition EnvironmentalConsolidator Traffic Information Consolidator TUM Gatetway to Traffic Light Controller 3 SODIT LCPC PTV SIE Object Refinement EnvironmentalEvent Recognition Traffic Data Calculator CCTV for Positioning (Preprocessing Unit)‏ 4 CIDAUT PTV TUM Central Level Fusion 5 Thermal Camera f. Living Objects (Preprocessing Unit)‏ Object Matcher VTT Data Receiver TUM ECAID 13 NIR Camera for Ice Detection (Sensor and Preprocessing Unit)‏ 6 CSST VTT Situation Refinement Map Matcher Data Items in “SF_SP7_Data_format&messages.doc”: LaserSensorObjects UDP MSGVehicleBeacon UDP StatusTrafficLight&PedestrianDetector, AggregatedDetectorData SOAP CameraMovingObjectDetection UDP CameraLivingObjectDetection UDP CameraIceDetection UDP RFIDGhostDriverDetection (std.) UDP WirelessSensorNetworkObjects (std.) UDP SafetyCenterInformation (std.) UDP TrafficControlCenterMotorway (std.) UDP CameraMeteoConditionDetection (std.) UDP InfAppCoordinatorToDataFusion UDP RSU internal (not in SF_SP7_Data_format&messages.doc) TUM RFID for Ghost Driver Detection (Preprocessing Unit)‏ 7 BME Wireless Sensor Network (Preprocessing Unit)‏ Sensor Level Fusion 8 MIZAR 1 Cooperative Pre-Data Fusion Gateway to Safety Centre IBEO 9 PTV Gateway to Traffic Control Centre TUM/MIZAR 10 IBEO Specific Test Sites??? 2 11 CCTV for Visibility (Preprocessing unit)‏ LCPC Laserscanner (Infrastructure Sensor)‏ Message Router (VANET)‏

  18. No Data Item Prot. # DataObjects Freq. Object Matching Map Matching Remarks 1 LaserSensorObjects UDP variable 12,5 Hz no yes Already matched with vehicle beacon data. 2 MSGVehicleBeacon UDP variable 2 Hz yes yes 3 StatusTrafficLight&PedestrianDetector, AggregatedDetectorData SOAP fix 1 Hz no no Reference to links/lane is stored in LDM. 4 CameraMovingObjectDetection UDP Variable 1 Hz (?)‏ yes yes 5 CameraLivingObjectDetection UDP Variable event (? 2Hz)‏ no no Detection area is stored in LDM. 6 CameraIceDetection UDP Variable event (? 1Hz)‏ no no Detection area is stored in LDM. 7 RFIDGhostDriverDetection UDP Variable event no no There will be no link between a certain vehicle in the LDM and the information “on this link is a ghost driver”. 8 WirelessSensorNetworkObjects UDP ??? ??? ??? ??? 9 SafetyCenterInformation (std.) UDP Variable event (?)‏ no yes (?)‏ 10 TrafficControlCenterMotorway UDP ??? ??? no ??? 11 CameraMeteoConditionDetection UDP variable event (? 2Hz)‏ no no Detection area is stored in LDM. 12 InfAppCoordinatorToDataFusion UDP ??? ??? ??? ??? SAFESPOT RSU System (Interface Defintions)‏ 20.02.2008

  19. Process Timing: Data Fusion / Object Refinement 20.02.2008 described in next slide OR = Object Refinement, ME = Manoeuvre Estimator OR OR OR ME ME ME LDM LDM LDM LDM LDM LDM sensor 1 (1 Hz)‏ sensor 2 (2 Hz)‏ sensor 3 (6 Hz)‏ sensor 4 (event)‏ VANET (event)‏ 0 ms 250 ms 500 ms 750 ms 0 ms 250 ms 500 ms Any Situation Refinement Any Situation Refinement Any Situation Refinement Any Application • The OR-ME-block is performed twice a second. • The sensors 1-4 above are assumed to be trajectory related and provide absolute positions of objects: e.g. cameras, laser scanner, etc. • The timing of the transmission of the sensors results should be like this that periodic events lays as close as possible to the left border of OR, i.e. in one or both of the intervals [0,250] and [500,750]. • The VANET events can hardly be influenced concerning the timing of transmission. They are all used no matter when they arrive to perform the OR. Worst case for the age of a data item at the moment of processing is 500 ms. • Situation refinement or application, that uses in some way positions of objects and/or trajectories, should start either closely after 0 msec or closely after 500 msec.

  20. Input att1-a t1-a Source 1 t1 t1 t1 Input att1 Source 2 Input att1+b t1+b Source 3 Map Matching Writing LDM Data Receipt Time Alignment & Tracking Object Matching R R R Data Fusion: OR Logical Description 20.02.2008 offset time : a offset time : b logical reference time : t1 • The alignment computes / calculates the position of an object (could be any other state / attribute of the object as well) to one specific point in time. In the example above are 3 input sources which provide data on the absolute position of objects (WGS 84). These data is sensed at different points in time (t1-a; t1; t1+b). Note: The result can be transmitted at the same point in time (technical point in time vs. logical point in time). • The alignment “shifts” (either forward or backward) all positions to the same point in time t1. (See column 2 in the picture). This point in time should be the value of the time stamp the object position has in the LDM as well. In order to do this “shifting” the alignment function has to know more about the states of the object (e.g. speed, acceleration, position at the point in time before t1). I.e. a tracking of the objects is necessary for doing this. And therefore a internal OR memory stack. • After the alignment the matching of the position of objects provided by the different sources (column 3) is done. • A requirement for this is that all components have synchronized computer clocks. (NTP Server?!?)

  21. Data Sources - TODO define UDP data structures, define static description of the sensor (LDM), generate sample data + develop mockup, consideration of NTP (ethernet connection), data transmission synchronisation for trajectory related data ([0,250] and [500,750]), ensure incorporation of accuracy values for the raw data, ensure UDP binary transmission, ensure that UDP time stamp must be the time point of the event (!!) similar data might use the same data structure (classification)

More Related