1 / 9

Learning Outcomes

Learning Outcomes. Mahasiswa dapat menerangkan tentang aljabar proposisi dan sifat kebenaran pernyataan operator & sifat-sifat proposisi beserta contoh penerapannya. Outline Materi:. Pengertian Aljabar Prosposisi Konsep dasar Aljabar Proposisi Sifat-sifat kebenaran Contoh permasalahan.

cecil
Download Presentation

Learning Outcomes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Learning Outcomes • Mahasiswa dapat menerangkan tentang aljabar proposisi dan sifat kebenaran pernyataan operator & sifat-sifat proposisi beserta contoh penerapannya.

  2. Outline Materi: • Pengertian Aljabar Prosposisi • Konsep dasar Aljabar Proposisi • Sifat-sifat kebenaran • Contoh permasalahan

  3. Pengertian Aljabar Proposisi • Proposisi adalah suatu pernyataan gabungan • p,q,.. merupakan variabel, maka proposisi dapat ditulis seperti: P(p,q,r…) • Nilai kebenarannya diketahui, bila kebenaran variabelnya diketahui • Penentuan nilai kebenarannya umumnya dibuat dengan menggunakan tabel kebenaran • Contoh ~(p^~q);

  4. Logika Equivalent (kesamaan logika) • Dua proposisi yang memiliki nilai tabel kebenaran yang sama • Contoh • ~ (p ^ q) = ~p v ~q • (p v q) ^ q = (p ^ q) v q • (~p v q) ^ p = p ^ q • (p ^ q) v r = (p v r) ^ (q v r)

  5. Aljabar Proposisi • Hukum yg berlaku di dalam proposisi • Idempotent; pvp=p, p^p=p • Associative; (pvq)vr = pv(qvr), (p^q)^r = p^(q^r) • Commutative; pvq = qvp, p^q = q^p • Distributive; pv(q^r)=(pvq)^(pvr), p^(qvr)=(p^q)v(p^r) • Identity; pvf = p, p^t=p, pvt=t, p^f=f

  6. Aljabar Proposisi (2) • Complement; pv~p=t, p^~p=f, ~t=f, ~f=t • Involution; ~~p=p • DeMorgans; ~(pvq)=~p ^ ~q, ~(p^q)=~pv~q.

  7. Aljabar Proposisi (3)

  8. Aljabar Proposisi (4) ~(~pq)(pr) = (p~q)(pr), De’Morgan dan involusi = [(p~q)p][(p~q)r], distributive = p(~qp)(pr)(~qr), distributive= p(~qr), absorbsi.

  9. Terima kasih, Semoga berhasil

More Related