1 / 53

Fig. 11-CO, p. 297

Fig. 11-CO, p. 297. Fig. 11-1a, p. 299. Fig. 11-1b, p. 299. Fig. 11-2a, p. 300. Fig. 11-2b, p. 300. Fig. 11-2c, p. 300. Motion due to inertia. Combined effect. Motion due to gravity. c. Fig. 11-2c, p. 300. Fig. 11-3, p. 300. 1,650 km (1,023 mi).

Download Presentation

Fig. 11-CO, p. 297

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fig. 11-CO, p. 297

  2. Fig. 11-1a, p. 299

  3. Fig. 11-1b, p. 299

  4. Fig. 11-2a, p. 300

  5. Fig. 11-2b, p. 300

  6. Fig. 11-2c, p. 300

  7. Motion due to inertia Combined effect Motion due to gravity c Fig. 11-2c, p. 300

  8. Fig. 11-3, p. 300

  9. 1,650 km (1,023 mi) Earth’s mass is 81 times the mass of the moon Moon (81/82) r (1/82) r Average Earth–moon distance (r) Fig. 11-3, p. 300

  10. Fig. 11-4, p. 300

  11. Moon Moon attracts ocean Fig. 11-4, p. 300

  12. Center of mass Moon Earth’s motion creates opposing bulge Moon attracts ocean Fig. 11-4, p. 300

  13. Moon Combined result Fig. 11-4, p. 300

  14. Fig. 11-5, p. 301

  15. Inertia (sometimes called centrifugal “force”): The same for all particles in and on Earth. Gravitational attraction: Decreases as the square of the distance from the moon. Bulge opposite moon 1 4 CE Moon Bulge toward moon Forces are balanced here 3 2 Tractive forces: Net force when effects of inertia and gravitational attraction are combined. They create two bulges in the ocean: one in the direction of the moon, the other opposite. The two forces that can move the ocean—inertia and gravitational attraction—are precisely equal in strength but opposite in direction, and thus balanced, only at the center of Earth (point CE ). Fig. 11-5, p. 301

  16. Fig. 11-6, p. 301

  17. Water bulge resulting from inertia (centrifugal “force”) North Pole Moon Water bulge resulting from gravitational attraction South Pole Fig. 11-6, p. 301

  18. Fig. 11-7a, p. 302

  19. 1226 (about noon), Island exposed 1838 (6:38 P.M.) Island submerged 0613 (6:13 A.M.) Island submerged North Pole Moon Gravity bulge Inertia bulge Earth turns eastward 0000 (midnight), Island high and dry Fig. 11-7a, p. 302

  20. Fig. 11-7b, p. 302

  21. High tide Average sea level Low tide 0000 0613 1226 1838 Time of day Fig. 11-7b, p. 302

  22. Fig. 11-8, p. 303

  23. The moon moves this much in 8 hours . . . . . . and this much in 24 hours Moon Earth North x Pole North x Pole North x Pole North x Pole North x Pole Rotation Tidal bulges Noon 8:00 P.M. 4:00 A.M. Noon 12:50 P.M. on Day 2 8 hours 8 hours 8 hours 50 min Start 1 Solar day 1 Lunar day Fig. 11-8, p. 303

  24. Moon Earth North x Pole North x Pole North x Pole North x Pole North x Pole Tidal bulges Rotation Noon 8:00 P.M. 4:00 A.M. Noon 12:50 P.M. on Day 2 50 min 8 hours 8 hours 8 hours Start 1 Solar day 1 Lunar day The moon moves this much in 8 hours . . . . . . and this much in 24 hours Stepped Art Fig. 11-8, p. 303

  25. Fig. 11-9, p. 303

  26. N Moon S Fig. 11-9, p. 303

  27. Fig. 11-10, p. 303

  28. Island submerged (higher high tide) Island partly submerged (lower high tide) North Pole Moon Island exposed (low tide) Earth turns eastward Equator South Pole Fig. 11-10, p. 303

  29. Fig. 11-11a, p. 304

  30. Lunar tide Solar tide Sun Full moon New moon Spring tides Earth turns Fig. 11-11a, p. 304

  31. Fig. 11-11b, p. 304

  32. First-quarter moon Lunar tide Solar tide Earth turns Sun Third-quarter moon Neap tides Fig. 11-11b, p. 304

  33. Fig. 11-12, p. 305

  34. Fig. 11-13, p. 306

  35. Semidiurnal tides Diurnal tides Mixed tides d (ft) (m) Mixed tide, Los Angeles Diurnal tide, Mobile, Alabama Semidiurnal tide, Cape Cod 14 4 Higher high tide 10 3 High tide Lower high tide High tide 6 2 4 1 0 0 Lower low tide Higher low tide –4 –1 Low tide Low tide 0 6 12 18 24 30 0 6 12 18 24 30 36 42 48 0 6 12 18 24 30 36 42 48 36 42 48 a Time (hr) b Time (hr) c Time (hr) Fig. 11-13, p. 306

  36. Fig. 11-14, p. 307

  37. N AP a Tidal crest enters basin, trends toward right side (in Northern Hemisphere) due to Coriolis effect. AP = amphidromic point Fig. 11-14, p. 307

  38. N Rising tide High tide AP Low tide b AP = amphidromic point Fig. 11-14, p. 307

  39. N High tide Rising tide AP Falling tide c AP = amphidromic point Fig. 11-14, p. 307

  40. N Falling tide Low tide High tide d AP = amphidromic point Fig. 11-14, p. 307

  41. Fig. 11-15, p. 308

  42. Fig. 11-16a, p. 308

  43. 6 hr 8 hr 4 hr 2 hr 10 hr 0 hr 0 hr Open ocean Fig. 11-16a, p. 308

  44. Fig. 11-16b, p. 308

  45. Québec 4 hr 6 hr 2 hr 4 hr Newfoundland 6 hr 2 m 1 m 8 hr 0 hr 0 hr New Brunswick 10 hr Cape Breton Island Nova Scotia Bay of Fundy 0 100 200 km 100 1 mi Fig. 11-16b, p. 308

  46. Fig. 11-17a, p. 309

  47. 4 hr 2 hr Open ocean Fig. 11-17a, p. 309

  48. Fig. 11-17b, p. 309

  49. New Brunswick 10 m St. John 3.5 hr 4 hr 3 hr 7.5 m 10 m 15 m 5 m 4.5 hr Nova Scotia 0 50 100 km 10 50 mi Fig. 11-17b, p. 309

  50. Fig. 11-18a, p. 309

More Related