1 / 44

HIGH RESOLUTION & CONTRAST

HIGH RESOLUTION & CONTRAST. Imaging F. Pedichini. PARSEC: 3.26 ly. 3 Pc. 1 arcsec. 1 Pc. 1 A.U. 1 A.U. 1 A.U. 1 A.U. 2 arcsec. EXO_Planets @ 10 pc. 1rad = 206265 arcsec [1 mas = 1e-3 arcsec ]. 10 pc. 100 mas. 1 A.U. 300 mas. 3 A.U. 500 mas. 5 A.U.

chaz
Download Presentation

HIGH RESOLUTION & CONTRAST

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. HIGH RESOLUTION & CONTRAST Imaging F. Pedichini

  2. PARSEC: 3.26 ly 3 Pc 1arcsec 1 Pc 1 A.U. 1 A.U. 1 A.U. 1 A.U. 2 arcsec

  3. EXO_Planets @ 10 pc 1rad = 206265 arcsec [1 mas = 1e-3 arcsec] 10 pc 100 mas 1 A.U. 300 mas 3 A.U. 500 mas 5 A.U.

  4. Airy disc @ telescope [mas] : 1.22λ/D

  5. Airy disc @ 8.2 m, high contrast: Peak normalized flux 1.22λ/D @ 630 nm ~ 18 mas [mas] Sun flux @ 10pc = 1.5e9 γ/s [R band]

  6. Sun flux @ 10pc = 1.5e9 γ/s [R band] Jupiter flux @ 10pc, 5A.U. = 5.0 γ/s [R band] Jupiter flux @ 10pc, 1A.U. = 125 γ/s Jupiter flux @ 10pc, 0.5A.U. = 600 γ/s

  7. Planet contrast vs Sun distance: 8e-4 8e-3 [mas] 3e-2 Diffraction profile for 8.2 m telescope

  8. Detection is not Contrast ! S/N is intrinsic in photon statistics

  9. Detection is not Contrast (the Math) !

  10. Detection ! Airy profile flux normalized Sun flux @ 10pc = 1.5e9 γ/s Jupiter flux @ 10pc, 5A.U. = 5 γ/s Jupiter flux @ 10pc, 1A.U. = 125 γ/s

  11. Flux , noise [γ] Detection ! 0.5 A.U. 1 A.U. 5 A.U. Texp [s]

  12. Terra, terra…. Jupiter mag=5

  13. Simple telescope optics: PUPIL plane PUPIL plane IMAGE plane IMAGE plane

  14. Less Simple telescope optics: PUPIL plane PUPIL plane IMAGE plane IMAGE plane OCCULTING DISK

  15. Lyot Coronagraph telescope optics: PUPIL plane PUPIL plane LYOT STOP IMAGE plane IMAGE plane OCCULTING DISK

  16. Lyot Coronagraph gain 100 in contrast:

  17. Coronagraph ! Sun flux @ 10pc = 5e9 γ/s Jupiter flux @ 10pc, 5A.U. = 5 γ/s Terra flux @ 10pc, 1A.U. = 1.3 γ/s

  18. Flux , noise [γ] Coronagraph Detection 1 A.U. 5 A.U. Texp [s]

  19. Lyotgaussian Coronagraph gain ~1e4 in contrast:

  20. NO OBSTRUCTION SECONDARY 11% OBSTRUCTION

  21. Seeing @telescope:

  22. Detection; FWHM size is crucial ! S/N=1 S/N=0.5 S/N=? S/N=6 S/N=17 S/N=11 r=25 r=15 r=10 Noise level r.m.s. 33 S/N=4 S/N [peak] S/N=34 S/N [integral] Integral Signal 10000 r=5

  23. Seeing @ 8.2 m, low contrast: Flux normalized to 1 Airy profile Seeing profile FWHM=1” 600 mas FWHM seeing [mas]

  24. Strehl, Kolmogorov and Marechal:

  25. the Large Binocular Telescope • Aperture diameter [m] 2 x 8.4 (f# 15) • Wavelenght [µm] 0.32 ÷ 10 • Mount control Alt-Az on oilpad • Lens profileerror[nm] <50 (active and adaptiveoptic ) • Image blurring [arcsec] 0.3 ÷ 0.9 (0.015 diff. limit) • Adaptiveopticsfacilityembedded in the secondarymirror • Location Mount Graham (Arizona) 3200 m

  26. the Large Binocular Telescope

  27. Adaptive Optics basic: MTF N.C.P.A.

  28. Experimental PSF (LBT FLAO results): H band[1.6µ] Esposito et al. SPIE 2011

  29. Strehlvs guide star (LBT FLAO results): Esposito et al. SPIE 2011

  30. HIP76041750nm-10nm seeing 1” 600 modino optics -> scale = 7.2mas/pix Ghost E. Pinna, priv. com.

  31. HR 8799 infrared light from ExoPlanets: Esposito et al. A&A 549, 2013

  32. PSF reconstruction… where are the planets here ?

  33. Theoretical limit for 8.2m @ 650nm (texp 3600 s + A.O. σ 80 nm + Lyot-coro) 10 J 50 J 4 J 1 J 5 pc 10 pc

  34. Angular Differential Imaging: RA = 0° RA = 20° RA = 45° PA = 0° PA = 20° PA = 45°

  35. V-SHARK-Forerunner: 600nm A.O. at 1600 f.p.s. (goal 16÷17 mas. resolution) Simulated image of Io moons of Jupiter

  36. V-SHARK CORONAGRAPH optical layout

  37. V-SHARK in 3d:

  38. Hot Stuff (Advanced Adaptive Optics) Adaptive Optics can work at visible; running fast, saving the errors and doing blind de-convolution you get this…! Courtesy of S. Jefferies (Maui Air Force Lab)

  39. No A.O. at 1.2m telescope! Courtesy of S. Jefferies (Maui Air Force Lab) Applied Optics, Vol. 48, Issue 1, pp. A75-A92 (2009)http://dx.doi.org/10.1364/AO.48.000A75

  40. Is this possible….? 880 nm 3.6 meter telescope 1.22 λ/D = 61mas 10 cm @ 560 km = 36mas

  41. Next future LBTI vs EELT: 21 m baseline 2 x 1000÷4000 actuators Ro=13÷6 cm 37 m baseline 4000 actuators Ro=30 cm

  42. NGS vs LGS :

  43. che la Forzasia con Voi ! grazie per l’attenzione Courtesy of D. Bonaccini (ESO)

More Related