450 likes | 591 Views
HIGH RESOLUTION & CONTRAST. Imaging F. Pedichini. PARSEC: 3.26 ly. 3 Pc. 1 arcsec. 1 Pc. 1 A.U. 1 A.U. 1 A.U. 1 A.U. 2 arcsec. EXO_Planets @ 10 pc. 1rad = 206265 arcsec [1 mas = 1e-3 arcsec ]. 10 pc. 100 mas. 1 A.U. 300 mas. 3 A.U. 500 mas. 5 A.U.
E N D
HIGH RESOLUTION & CONTRAST Imaging F. Pedichini
PARSEC: 3.26 ly 3 Pc 1arcsec 1 Pc 1 A.U. 1 A.U. 1 A.U. 1 A.U. 2 arcsec
EXO_Planets @ 10 pc 1rad = 206265 arcsec [1 mas = 1e-3 arcsec] 10 pc 100 mas 1 A.U. 300 mas 3 A.U. 500 mas 5 A.U.
Airy disc @ telescope [mas] : 1.22λ/D
Airy disc @ 8.2 m, high contrast: Peak normalized flux 1.22λ/D @ 630 nm ~ 18 mas [mas] Sun flux @ 10pc = 1.5e9 γ/s [R band]
Sun flux @ 10pc = 1.5e9 γ/s [R band] Jupiter flux @ 10pc, 5A.U. = 5.0 γ/s [R band] Jupiter flux @ 10pc, 1A.U. = 125 γ/s Jupiter flux @ 10pc, 0.5A.U. = 600 γ/s
Planet contrast vs Sun distance: 8e-4 8e-3 [mas] 3e-2 Diffraction profile for 8.2 m telescope
Detection is not Contrast ! S/N is intrinsic in photon statistics
Detection ! Airy profile flux normalized Sun flux @ 10pc = 1.5e9 γ/s Jupiter flux @ 10pc, 5A.U. = 5 γ/s Jupiter flux @ 10pc, 1A.U. = 125 γ/s
Flux , noise [γ] Detection ! 0.5 A.U. 1 A.U. 5 A.U. Texp [s]
Terra, terra…. Jupiter mag=5
Simple telescope optics: PUPIL plane PUPIL plane IMAGE plane IMAGE plane
Less Simple telescope optics: PUPIL plane PUPIL plane IMAGE plane IMAGE plane OCCULTING DISK
Lyot Coronagraph telescope optics: PUPIL plane PUPIL plane LYOT STOP IMAGE plane IMAGE plane OCCULTING DISK
Coronagraph ! Sun flux @ 10pc = 5e9 γ/s Jupiter flux @ 10pc, 5A.U. = 5 γ/s Terra flux @ 10pc, 1A.U. = 1.3 γ/s
Flux , noise [γ] Coronagraph Detection 1 A.U. 5 A.U. Texp [s]
NO OBSTRUCTION SECONDARY 11% OBSTRUCTION
Detection; FWHM size is crucial ! S/N=1 S/N=0.5 S/N=? S/N=6 S/N=17 S/N=11 r=25 r=15 r=10 Noise level r.m.s. 33 S/N=4 S/N [peak] S/N=34 S/N [integral] Integral Signal 10000 r=5
Seeing @ 8.2 m, low contrast: Flux normalized to 1 Airy profile Seeing profile FWHM=1” 600 mas FWHM seeing [mas]
the Large Binocular Telescope • Aperture diameter [m] 2 x 8.4 (f# 15) • Wavelenght [µm] 0.32 ÷ 10 • Mount control Alt-Az on oilpad • Lens profileerror[nm] <50 (active and adaptiveoptic ) • Image blurring [arcsec] 0.3 ÷ 0.9 (0.015 diff. limit) • Adaptiveopticsfacilityembedded in the secondarymirror • Location Mount Graham (Arizona) 3200 m
Adaptive Optics basic: MTF N.C.P.A.
Experimental PSF (LBT FLAO results): H band[1.6µ] Esposito et al. SPIE 2011
Strehlvs guide star (LBT FLAO results): Esposito et al. SPIE 2011
HIP76041750nm-10nm seeing 1” 600 modino optics -> scale = 7.2mas/pix Ghost E. Pinna, priv. com.
HR 8799 infrared light from ExoPlanets: Esposito et al. A&A 549, 2013
Theoretical limit for 8.2m @ 650nm (texp 3600 s + A.O. σ 80 nm + Lyot-coro) 10 J 50 J 4 J 1 J 5 pc 10 pc
Angular Differential Imaging: RA = 0° RA = 20° RA = 45° PA = 0° PA = 20° PA = 45°
V-SHARK-Forerunner: 600nm A.O. at 1600 f.p.s. (goal 16÷17 mas. resolution) Simulated image of Io moons of Jupiter
Hot Stuff (Advanced Adaptive Optics) Adaptive Optics can work at visible; running fast, saving the errors and doing blind de-convolution you get this…! Courtesy of S. Jefferies (Maui Air Force Lab)
No A.O. at 1.2m telescope! Courtesy of S. Jefferies (Maui Air Force Lab) Applied Optics, Vol. 48, Issue 1, pp. A75-A92 (2009)http://dx.doi.org/10.1364/AO.48.000A75
Is this possible….? 880 nm 3.6 meter telescope 1.22 λ/D = 61mas 10 cm @ 560 km = 36mas
Next future LBTI vs EELT: 21 m baseline 2 x 1000÷4000 actuators Ro=13÷6 cm 37 m baseline 4000 actuators Ro=30 cm
che la Forzasia con Voi ! grazie per l’attenzione Courtesy of D. Bonaccini (ESO)