430 likes | 684 Views
Physical Phenomena for TeraHertz Electronic Devices. Jérémi TORRES Institute of Electronics of the South University Montpellier France. Outline. TeraHertz : Generalities Physical phenomena Plasma-waves Optical-phonon resonance Conclusions. The High-Frequency Investigation Group.
E N D
Physical Phenomenafor TeraHertzElectronic Devices • Jérémi TORRES • Institute of Electronics of the South • University Montpellier • France
Outline • TeraHertz : Generalities • Physical phenomena • Plasma-waves • Optical-phonon resonance • Conclusions
The High-Frequency Investigation Group Microwaves Antennas/Radars EM Compatibility RFID Theory Monte Carlo Hydrodynamic Drift-Diffusion Experiments Photoexcitation THz devices Near-field EM cartography
The TeraHertz “gap” f = 1012 Hz, 300 GHz - 10 THz, λ = 1 mm - 30 μm Electronics Photonics Low cost Compact Room temperature Continuous-wave Tunable Integration
Power vs frequency Proc. of IEEE 23, 10 (2005)
Optical THz Devices • Direct • Gas laser • Free electron laser • p-Ge laser • Quantum cascade laser Indirect • Laser Beating + photoconductor • Femtosecond laser + nonlinear cristal Difficulties: complexity, cost, magnetic field, maintenance, temperature
Electronic THz Devices • Direct • Gunn, RTD, Impatt diodes • Schottky, varactor diodes • Magnetron, Carcinotron • FETs, HEMTs Indirect • Multiplication • Nonlinearities Difficulties: current, temperature, contact resistance, efficiency, noise
Main Features of THz Radiation • Non ionizing • Strong interaction with molecules • Transmitted through many materials • Higher resolution than microwaves
Applications in Spectroscopy Physics: THz Time Domain Spectroscopy, dynamics of electrons, holes, phonons
Applications in Spectroscopy Chemistry: chemical reactions, combustion, pollution, environment control (Grischkowski, Oklahoma State Univ.)
Applications in Spectroscopy Astronomy: atmospheric window, detection of molecules, atoms, ionized gas
Applications in Telecommunications TeraHertz antennas, wireless communication Progr. Quant. Electr. 28, 1 (2004)
Applications in Art http://www.spiegel.de
Applications in Imaging (T-Ray) Inspection materials/devices/systems Industry (Planken, Univ. Delft)
Applications in Imaging (T-Ray) Medicine Tooth decay (TeraView)
Applications in Imaging (T-Ray) Medicine Dermatology (Teraview)
Applications in Imaging (T-Ray) Security Courtesy of Teraview
1. THz Nanotransistors • … exploiting plasma waves
Experiments on InGaAs HEMTs Origin of the peaks? Appl. Phys. Lett. 80, 3433 (2002)
THz oscillations from plasma-waves 3D plasma oscillations Analogy : harmonic oscillator Tunable frequency with Vg Practical applications : High Electron Mobility Transistor
vdrift-vplasma Travelling plasma waves vdrift+vplasma
Travelling plasma waves Mascaret over the Dordogne river http://www.archaero.com/mascaret.htm
Stationary plasma waves n = 1 f = 0.9 THz n = 3 f = 2.7 THz
Plasma synchronization by optical beating THz beating Appl. Phys. Lett. 89, 201101 (2006)
Frequency (GHz) Detection of THz beating + THz generation Experiments (detection) Simulation (generation+detection) δ VDS ⟨VDS⟩ Appl. Phys. Lett. 89, 201101 (2006)
5f0 3f0 f0 Resonant frequency vs swing voltage Provides frequency tuning IEEE J. Sel. Top. Quant. Electron. 14, 491 (2008)
Enhancing detection Simulation Experiments Modeling Journ. Appl. Phys. 106, 013717 (2009)
THz imaging with HEMT Non resonant detection F. Teppe et al., to be published (2009)
2. TeraHertz MASER • … or exploiting the optical-phonon transit-time resonance in nitrides
Scattering rates in GaN at T=10 K low energies: acoustic and impurity scattering high energies: optical phonon emission J. Appl. Phys. 89, 1161 (2001)
The optical-phonon transit-time resonance τ - τ + Scattering rate optical phonon acceleration τE Energy τ- : Average relaxation time τE : Carrier transit time τ+ : Time for optical phonon emission
Advantages of nitrides Stronger electron-phonon coupling Much sharper threshold J. Appl. Phys. 89, 1161 (2001)
InN, T=10 K
InN, T=10 K
InN, T=10 K
InN, T=10 K
Summary of amplification bands Phys. Rev. B 76, 045333 (2007)
Design of a cavity and emitted power low E large E Gain depends on the electric field
Conclusions • Exciting field for theory and experiments • Junction electronics/optics • New phenomena, materials, devices, systems
Sujet de stage « Etude expérimentale des oscillations Gunn et de plasma téraHertz dans des composants de la micro-électronique »