1 / 26

High-energy photon collisions at the LHC -- Summary --

High-energy photon collisions at the LHC -- Summary --. Michael Klasen (LPSC Grenoble) April 25, 2008. High-energy photon collisions at the LHC -- Summary --. Michael Klasen (LPSC Grenoble) April 25, 2008. Sorry - impossible to cover all 44 talks. Introduction.

chi
Download Presentation

High-energy photon collisions at the LHC -- Summary --

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. High-energy photon collisions at the LHC-- Summary -- Michael Klasen (LPSC Grenoble) April 25, 2008

  2. High-energy photon collisions at the LHC-- Summary -- Michael Klasen (LPSC Grenoble) April 25, 2008 Sorry - impossible to cover all 44 talks ...

  3. Introduction • Higgs production (K. Piotrzkowski): • h0: Diffractive > photoproduction • H++/--: Drell-Yan > photoproduction • SUSY particle production: gg  ll, cc • J. Ohnemus, T.F. Walsh, P.M. Zerwas, PLB 328 (1994) 369 (M. Herquet) ~ ~ ~ ~ Michael Klasen (LPSC Grenoble)

  4. Photon physics at LEP • Two phases (M. Przybycien): • LEP-I : s = 91 GeV • LEP-II: s = 161-209 GeV • Untagged events: • stotgg (L3=OPAL):Soft IP & IR, but no hard IP • Inclusive jets (L3OPAL): OPAL agrees with NLO (KKK) • Dijets (OPAL):Separate D, SR, and DR with xg • Charged hadrons (L3OPAL): HarderpT-spectrum than in gp • Single-tagged events: • Fg2: QED, hadronic, charm, as • Alt. power counting (J. Hejbal) • Double-tagged events: • Fg*2: QED, hadronic, Fe2, stotg*g* Albino, MK, Söldner-Rembold, PRL 89 (2002) 122004 PDG, JPG 33 (2006) 1 Michael Klasen (LPSC Grenoble)

  5. Photon physics at HERA • Precise experimental results (T. Schörner-Sardenius): • Hard scattering: S=½ quark vs. S=1 gluon exchange (cos q) • Photon structure: From LAC / GRV to AFG / CJK (xp <>0.1) • Proton structure: Up to 60% from gluon initial state(xg >0.8) • Large theoretical errors (J. Chyla): • Choice of ren./fact. scheme: DISg/MS; massive/ZM-VFNS/GM-VFNS • Choice of ren./fact. scale: m  mF; saddle point • Need direct contribution at NNLO (Hard ! Resummation, MC@NLO) • Prompt photons at Tevatron: Need larger pT ! • Transition from real to virtual photons: • Forward jets, particles at HERA: BFKL vs. DGLAP evolution • LHC: Elastic events. Low-mass exchanges possible ? Forward n ! Michael Klasen (LPSC Grenoble)

  6. Photon physics at ILC (1) • Photons collider (V. Telnov): • Bremsstrahlung: Low E, L • Compton scatt.: High E, L • Adjust EL, Pe,L, bL, X-angle • Measure L (gg ll, ge  ge) • Physics (A. de Roeck): • gg h,A,H  bb • ge  ce  cce • Anomalous gWtb • Detector requir.s (J. Gronberg): • Higgs:DE/E3%(jet),d5mm(b) • SUSY: Hermiticity • PLC: Affects beam pipe, endcap • Detector concepts: • US: SiD (silicon tracker) • Asia/EU: GLD/LDC  ILD (TPC) _ ~~ ~~ Michael Klasen (LPSC Grenoble)

  7. Photon physics at ILC (2) • gg at LHC • IP »g, needs S2 • Sarycheva, Ovyn • - ” - • ? • Gronberg, Schul • ? • ? • v.Manteuffel, Pierzchala • Machado • Insufficient s ? • Low rate gg ? • Favereau • Godbole ? • ? • ? • Kumar, Nystrand Michael Klasen (LPSC Grenoble)

  8. Photon physics at ILC (3) • Higgs mass: • Dm ~ 100 MeV / 1 year running ~ e+e-,pp/2 • Partial width (): • 2-7% in bb channel (needs h  bb from e+e-) 15% in e+e- • 3-10% in WW, ZZ channel (needs BR from e+e-) ~ e+e- • Determination of the phase of the   h amplitude: • 3-10% in WW, ZZ channel Unique ? • CP analysis: • h  ZZ, WW angular analysis More poss., • h  tt interference w/ QED BG, l charge asymmetries clean tests • Linear polarization • Rare decay modes: • h   !, h  Z ? Difficult • Discovery reach for H, A: • Up to 0.8 see for see ~ 800 GeV s/2-50 GeV Michael Klasen (LPSC Grenoble)

  9. Photon physics at hadron colliders • Advantages (M. Strikman, Phys. Rep. 458 (2008) 1): • RHIC, Tevatron and LHC exist • Can reach sgg 486 GeV in O+O (400 GeV at ILC) • Not only gg, but also gp / gA collisions • Disadvantages: • Much less bremsstrahlung (mp »me)  compensate with Z • Not only g, but also IP interactions  el. weak final states • Uncertain photon flux  monitor luminosity (gg  ll) • Luminosity monitor: gg  ll • CMS (J. Hollar): pT >3 (6) GeV for mm (ee), |Df| > 2.9 (2.7) (low L) • Krakow-Paris (W. Krasny): pT > 0.2 (6) GeV, |Df| > 3.1 • FP 220 / FP 420 acceptance (X. Rouby): • Proton transport in beamline: HECTOR, MAD-X • FP 420: 20 GeV < Eg < 120 GeV (DEg = 2…1 GeV) • FP 220: 120 GeV < Eg < 900 GeV (DEg = ?) • Q2 = 0.01 … 1 GeV2 (DQ2 = 0.02 … 0.06 GeV2) Michael Klasen (LPSC Grenoble)

  10. Photon spectra at hadron colliders • UPC (C. Güclü, G. Baur): • b > R1+R2 • Coherent rad. by nucleus • Strong fields: Z1Z2/137 » 1 • Vibration of nuclei • Giant dipole resonance • Large soft cross sections • ee pair production e capture beam loss • Ion beam = straight line • Integrate over b • Semiclassical/Glauber phase • gA/Ag interference Michael Klasen (LPSC Grenoble)

  11. Photon physics at RHIC • Typical process: • Low multiplicity: • 1st vertex, 2 tracks, low pT • Nuclear breakup: • Forward neutrons • STAR (B. Grube): • pp: s-channel hel. conserv. • ee: LO QED ? (Za=0.6 !) • PHENIX (S. White): J/Yee Michael Klasen (LPSC Grenoble)

  12. Photon physics at Tevatron • Motivation (J. Pinfold): • Luminosity measurement • Calibrate FP 420 • Search for cc, odderon, h0, … • CDF detector components: • Miniplug calorimeter:3.5 < |h| < 5.5 • Beam shower counters:5.5 < |h| < 6 • Roman pots not used ! • Run-II data (532 pb-1/1.48 fb-1): • gg e+e-: 16 events (QED) • IP IP gg: 3ev.(2 gg, 1 p0p0 ?) • ggm+m-, g IP  J/Y, Y’ / U:334 / 145 events Michael Klasen (LPSC Grenoble)

  13. ATLAS(Giacobbe,deRoeck): L Ar forward: 3.1<|h|<4.9 LUCID: 5.6<|h|<6 (?) ALFA: Lpp at 2-3%, stot FP420: 0.002 < x1,2 < 0.02 ALICE (R. Schicker): Hadronic central: |h|<0.9 Muon spectr.: 2.5<|h|<4(?) Forward veto: 1<|h|<4 (5) CMS(Grothe,deRoeck): Hadronic forward: 3<|h|<5 CASTOR: 5.2<|h|<6.6 TOTEM: Lpp at 1%, stot FP420: Indispensable for gg Physics (Grothe, Tasevsky): qq  ll: PDFs at x1» x2 gg  jj: BFKL evolution, S2 g g ll: L at 4%, cal. FP420 gO/IPU:ds/dpT2,cal.tag. gO/IP  pp, KK: C = 1 g/IPg/IPh,H,A:Dm/m,CP ATLAS, CMS & ALICE forward detectors Michael Klasen (LPSC Grenoble)

  14. Factorisation breaking in diffraction • DIS events: 10-20% diffractive • Hard scale: pQCD applicable • Factorisation: • Proven in DIS (Collins et al.) • Broken in pp (Tevatron) • NLO DGLAP fits (A. Bruni): • H1 2006 fit A, B • Martin, Ryskin, Watt • ZEUS LPS + charm • Singlet well constrained • Gluon badly constrained (75%) • D* and dijets in DIS and gp: • D*: Factorisation works in DIS • Also in gp ! (direct dominates) • Dijets in DIS sensitive to fits • New H1 2007 Fit Jets Michael Klasen (LPSC Grenoble)

  15. CMS (V. Kumar): Similar distribution for mm Ntot  500  fg/A @ small x ALICE (J. Nystrand): Nr 2108, NJ/Y 105 NU 400 (only U  ee) Exclusive quarkonium production at LHC Michael Klasen (LPSC Grenoble)

  16. Exclusive VM production & DVCS at HERA • Exclusive VM (A.Bunyatyan): • Hard scale: Q2 or MVM2 • ds/dt  e-b|t|: Size of VM • DVCS: • Access to GPDs (B. Pire) • b(Q2) = A (1 - B log Q2/2) Michael Klasen (LPSC Grenoble)

  17. Inclusive quarkonium production at LHC • Color Singlet Model: • Wave function: J/Y ee • Uncanceled singularities • LO pT-distributions fail • NLO corr. large (gg, gp, pp) • Non-relativistic QCD: • Effective field theory (v2) • Non-pert. color octet operators • LO pT-distributions ok (fitted) • J/Y polarization fails • NLO corr. difficult (gg) (KKMS) • Madonia (J.P. Lansberg): • Equivalent photon approxim. • Only direct photons • Similar results for U Michael Klasen (LPSC Grenoble)

  18. Anomalouscouplingsingg  WW (1) • Eff. Lagrang. (A.v.Manteuffel): • Precision constraints from LEP • Additional Feynman diagrams: • Choice of final states: • Leptons: Clean signal • Jets: Large BR, full kinematics • Optimal observables: • Fully differential cross section • Evaluate covariance matrix • LHC photon flux: • Tag both p’s, integrate over Q2 Michael Klasen (LPSC Grenoble)

  19. Anomalouscouplingsingg  WW (2) • WWgg (T. Pierzchala): • OPAL limits LHC 1fb/10fb • WWg (O. Kepka): Michael Klasen (LPSC Grenoble)

  20. Anomalouscouplingsingg  WW (3) • WW  gg (O. Eboli): • LEP: • LHC: • Single/an.top (J.d.Favereau): • Bg.:tt;Wj,Wbb-tag,ET • |DVtb|/Vtb = 0.1, ktug < 0.05 / Michael Klasen (LPSC Grenoble)

  21. Single-W prod. (D. South): Isolated e/m and missing pT Combined H1/ZEUS analysis: H1larger l-angle acceptance Excess in large e+ data with pTX >25 GeV (H1,not ZEUS) Total cross sections andW polarization fractions agree with SM Anomalous top production: Single-W & anomalous top at HERA Michael Klasen (LPSC Grenoble)

  22. Higgs in photoproduction at LHC • gg  h (L. Sarycheva): • h  bb: • h  ZZ: • gq  hWq’ (S. Ovyn): • hW  lnbb • hW  lljj • hW  lllnnn • 3s for 100fb-1 (m=170GeV) • No discovery channel ! Dm ? Michael Klasen (LPSC Grenoble)

  23. Higgs in vector boson fusion at LHC • VBF (D. Zeppenfeld): • Event selection: • Tag forward jets • Veto central jets • Analyses: • h tt (<140), WW (>130) • 5s for L = 30 fb-1 • Backgrounds: • qq  qqWW • qq  qqZZ Michael Klasen (LPSC Grenoble)

  24. SUSY particle production at LHC ~ ~ ~ ~ • gg  l l (J. Gronberg, N. Schul): • LM1: m0 = 60 GeV • Same flavor: ee, mm • s = 2.2 fb  s = 0.7 fb • 5s discovery with 25 fb-1 • Mass resolution: few GeV • tt needs at least 100 fb-1 • gg  cc: • LM9: m0 = 1450 GeV • Different flavor: em, me • s = 3.6 fb  s = 0.07 fb • Needs at least 100 fb-1 • Backgrounds: • gg  ee, mm: Acoplanarity • gg  WW: Wgg, Wmiss Michael Klasen (LPSC Grenoble)

  25. Outlook • Jet and open light/heavy quark photoproduction: • Excellent channels to constrain nuclear PDFs  adapt NLO codes ? • Top charge determination in gg  tt ? (U. Baur et al.: qq/gg  ttg) • Vector meson production: • Very sensitive to gluon density • Determine Pomeron slope / discover Odderon • Distinguish CSM / NRQCD • Gauge boson production: • Single Z: sincl. = 102sSD = 104sPHP = ? sDPE • W pairs: Different effective Lagrangians, old limits  Comparison ? • Higgs production: • Hopeless in gg, difficult in gp • SUSY Higgses ? • SUSY particles: • Sleptons promising • Gauginos difficult  Squarks (IP), gluinos (1-loop) hopeless ? • R-parity violation, other BSM models ? Michael Klasen (LPSC Grenoble)

  26. Instructions for Nucl. Phys. B Proc. Suppl. • 8 pages per contributed talk (= 30’) • 12 pages per review talk (> 30’) • No color figures • Latex instructions / macros will be mailed by Elsevier • Strict deadline: May 31, 2008 • Free copy will be sent to allspeakers in fall THANK YOU ALL FOR COMING – SEE YOU NEXT SUMMER IN BELGIUM ! Michael Klasen (LPSC Grenoble)

More Related