1 / 14

Brittle Fracture

Brittle Fracture. “You can observe a lot just by watchin’.” Yogi Berra. All graphics from ASM Metals Handbook unless otherwise noted. Case Study: Paseo Bridge – Kansas City. The Bridge Suspension bridge Built in 1957 Carries I-35, I-29, & US-71 Crosses Missouri River

chidi
Download Presentation

Brittle Fracture

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Brittle Fracture “You can observe a lot just by watchin’.” Yogi Berra All graphics from ASM Metals Handbook unless otherwise noted

  2. Case Study:Paseo Bridge – Kansas City • The Bridge • Suspension bridge • Built in 1957 • Carries I-35, I-29, & US-71 • Crosses Missouri River • Major artery north of K.C. • 94,000 vehicles/day

  3. Case Study:Paseo Bridge – Kansas City • The problem • Expansion joint misalignment (23 Jan 03) • Deck rose 9 inches above approach on one end • 1 inch step on another • Guardrails snapped • Bridge closed for 2 weeks

  4. Approach Deck Case Study:Paseo Bridge – Kansas City • What happened? • Cause(s) • Mitigating circumstances • How should it be fixed? • Who will perform repairs? • Who is at fault? • State/City/Contractor? • What are the ramifications? • Cost • Inconvenience • Other bridges

  5. Case Study:Paseo Bridge – Kansas City

  6. How Material Breaks? • Ductile vs. brittle fracture • Principles of fracture mechanics • Stress concentration • Impact fracture testing • Fatigue (cyclic stresses) • Cyclic stresses, the S—N curve • Crack initiation and propagation • Factors that affect fatigue behavior • Creep (time dependent deformation) • Stress and temperature effects • Alloys for high-temperature use

  7. Fracture Separation of a body into pieces due to stress, at temperatures below the melting point. Steps in fracture: • crack formation • crack propagation Depending on the ability of material to undergo plastic deformation before the fracture two fracture modes can be defined - ductile or brittle Ductile fracture - most metals (not too cold): Extensive plastic deformation ahead of crack Crack is “stable”: resists further extension unless applied stress is increased Brittle fracture - ceramics, ice, cold metals:Relatively little plastic deformation Crack is “unstable”: propagates rapidly without increase in applied stress Ductile fracture is preferred in most applications

  8. strength % elongation Brittle Fracture Sequential tearing of bonds ef < 1%

  9. Brittle Fracture (Limited Dislocation Mobility) • No appreciable plastic deformation • Crack propagation is very fast • Crack propagates nearly perpendicular to the direction of the applied stress • Crack often propagates by cleavage – breaking of atomic bonds along specific crystallographic planes (cleavage planes)

  10. [100] [010] [001] Brittle Fracture • Cleavage occurs primarily in BCC and HCP crystals • Only in FCC materials at low temp • Cleavage occurs with in grains on specific planes

  11. Brittle Fracture

  12. Brittle Fracture • Macroscopic • Flat fracture face • Little/No necking • “Crystallized” fracture surface

  13. Brittle Fracture • Low-Magnification • “Chevron Marks” • Chevrons point back to origin

  14. Brittle Fracture • Microscopic (SEM) • “River Pattern” • Crack progressed “downstream” • These are not fatigue striations! (How can you tell?)

More Related