1 / 30

ACCT 2008 , Jun 16-22, Pamporovo, Bulgaria

Linear Fractional. Institute of Information & Communication Chonbuk National University Jeonju, 561-756, Korea Tel: +82632702463 ; Fax: +82632704166. htttp://en.wikipedia.org/wiki/Category:Matrices. ACCT 2008 , Jun 16-22, Pamporovo, Bulgaria. htttp://en.wikipedia.org/wiki/Jacket:Matrix.

chloe
Download Presentation

ACCT 2008 , Jun 16-22, Pamporovo, Bulgaria

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Linear Fractional Institute of Information & Communication Chonbuk National UniversityJeonju, 561-756, Korea Tel: +82632702463; Fax: +82632704166 htttp://en.wikipedia.org/wiki/Category:Matrices ACCT 2008, Jun 16-22, Pamporovo, Bulgaria htttp://en.wikipedia.org/wiki/Jacket:Matrix http://en.wikipedia.org/wiki/user:leejacket

  2. Jacket Basic Concept from Center Weighted Hadamard where Sparse matrix and its relation to construction of center weighted Hadamard *Moon Ho Lee, “Center Weighted Hadamard Transform” IEEE Trans. on CAS, vol.26, no.9, Sept. 1989 * Moon Ho Lee, and Xiao-Dong Zhang,“Fast Block Center Weighted Hadamard Transform” IEEE Trans. On CAS-I, vol.54, no.12, Dec. 2007.

  3. where where Why use Jacket Matrices? Jacket Definition: element inverse and transpose Simple Inverse and Examples:

  4. Example: Paley constr.

  5. Where are Jacket matrices?

  6. Fourier (1768-1830) Galois (1811-1832) Hadamard (1865-1963) *Element-wise Inverse *Linear Fraction Jacket Matrix : Moon Ho Lee (1985) Leonhard Euler (1707-1783) Markov (1856-1922) Fibonacci (1170-1250)

  7. w1=w4 w0=w3 w2=w5

  8. RMp(1,m)

  9. . .-1 Fibonacci Jacket Conference Matrix GF(7) J8= mod 7, J8’= mod 7. J8.J8’=(8-1) I mod 7 = 0.

  10. Fibonacci polynomials.

  11. EXAMPLE OF TRANSPOCE OF MAROV & JACKET:

  12. ? ? ? ? ?

  13. Applications: PN Sequence

  14. Output matrix is Jacket matrix:

  15. Conclusion Linear Fractional Jacket Matrices

  16. References • M.H. Lee, The Center Weighted Hadamard Transform, IEEE Trans.1989 AS-36, (9), pp.1247-1249. • S.-R.Lee and M.H.Lee, On the Reverse Jacket Matrix for Weighted Hadamard Transform, IEEE Trans. on Circuit Syst.II, vol.45.no.1, pp.436-441,Mar.1998. • M.H. Lee, A New Reverse Jacket Transform and its Fast Algorithm, IEEE Trans. Circuits Syst.-II , vol 47, pp.39-46, 2000. • M.H. Lee and B.S. Rajan, A Generalized Reverse Jacket Transform, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 48 no.7 pp 684-691, 2001. • J. Hou, M.H. Lee and J.Y. Park, New Polynomial Construction of Jacket Transform, IEICE Trans. Fundamentals, vol. E86-A no. 3, pp.652-659, 2003. • W.P. Ma and M. H. Lee, Fast Reverse Jacket Transform Algorithms, Electronics Letters, vol. 39 no. 18 , 2003. • Moon Ho Lee, Ju Yong Park, and Jia Hou,Fast Jacket Transform Algorithm Based on Simple Matrices Factorization, IEICE Trans. Fundamental, vol.E88-A, no.8, Aug.2005. • Moon Ho Lee and Jia Hou, Fast Block Inverse Jacket Transform, IEEE Signal Processing Letters, vol.13. No.8, Aug.2006. • Jia Hou and Moon Ho Lee ,Construction of Dual OVSF Codes with Lower Correlations, IEICE Trans. Fundamentals, Vol.E89-A, No.11 pp 3363-3367, Nov 2006. • Jia Hou , Moon Ho Lee and Kwang Jae Lee,Doubly Stochastic Processing on Jacket Matricess, IEICE Trans. Fundamentals, vol E89-A, no.11, pp 3368-3372, Nov 2006. • Ken Finlayson, Moon Ho Lee, Jennifer Seberry, and Meiko Yamada, Jacket Matrices constructed from Hadamard Matrices and Generalized Hadamard Matrices, Australasian

More Related