1 / 16

Lecture Notes 6 CS1502

Lecture Notes 6 CS1502. Formal Proofs in Propositional Logic. Reiteration. P P. Conjunctive Elimination. 1. PQ . . . P Q.  Elimination 1.  Elimination 1. Conjunctive Introduction. 1. P . . . 2. Q . . . P  Q.  Introduction 1,2. Proof.

ciaran-lang
Download Presentation

Lecture Notes 6 CS1502

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture Notes 6CS1502 Formal Proofs in Propositional Logic

  2. Reiteration • P P

  3. Conjunctive Elimination 1. PQ . . . P Q  Elimination 1  Elimination 1

  4. Conjunctive Introduction • 1. P . . .2. Q . . .P  Q  Introduction 1,2

  5. Proof 1. Cube(b)  Tet(d) 2. Large(d) 3. Tet(d)  Elim 14.Tet(d) ^Large(d)  Intro 3, 2

  6. Disjunction Introduction 1. P . . .P  Q  Introduction 1

  7. AB C (B  C)  D Prove: 1. AB 2. C 3. 4. 5. B  Elim: 1 B  C  Intro: 3, 2 (B  C)  D  Intro: 4

  8. Same conclusion Disjunctive EliminationProof by cases • P  Q . . . P … S Q … SS  Elimination

  9. 1. (A ^ B) v C 2. A ^ B 3. B ^ Elim: 2 4. C v B v intro: 3 5. C 6. C v B v Intro: 5 7. C v B v Elim: 1,2-4,5-6 (A ^ B) v C C  B Prove:

  10. Negative Elimination • 1.  P . . .P  Elimination 1

  11. Bottom Introduction 1. P…10. P...  Introduction 1, 10

  12. Negation Introduction • 7. P . . . 15.  P  Introduction 7-15

  13. Negation IntroductionProof by contradiction • 10.  P . . . 22.  23. P  Introduction 10-22  Elimination 23 24. P

  14. A  B B A 1. A  B 2. B 3. A 4. A 5.   Intro: 4, 3 6. B 7.   Intro: 6, 2 8.   Elim: 1, 4-5, 6-7 9. A  Intro: 3-8 10. A  Elim: 9 Prove: Note: This is a resolution step, something we are covering later

  15. Reminder: Equivalences • Two FOL sentences P and Q mean the same thing (are logicallyequivalent, written P  Q) iff they have the same truth value in all situations. If two sentences are logically equivalent, you can substitute one for the other. • Identity Laws: P ^ T  P; P v F  P • Domination Laws: P v T  T; P ^ F  F • Idempotent Laws: P v P  P; P ^ P  P • Double Negation: ~~P  P • Commutative Laws: P v Q  Q v P; P ^ Q  Q ^ P • Associative Laws: (P v Q) v R P v (Q v R) (P ^ Q) ^ R  P ^ (Q ^ R) • Distributive Laws: P v (Q ^ R)  (P v Q) ^ (P v R) P ^ (Q v R)  (P ^ Q) v (P ^ R) • DeMorgan’s Laws: ~(P ^ Q)  ~P v ~Q ~(P v Q)  ~P ^ ~Q

  16. 1. ~(P ^ Q) 2 . ~(~P v ~Q) 3 . ~P 4 . ~P v ~Q v intro: 3 5 . _|_ _|_ intro: 4,2 6 . ~~P ~ intro: 3-5 (p.by.cont) 7 . P ~ elim: 6 8 . ~Q 9 . ~P v ~Q v intro: 8 10. _|_ _|_ intro: 9,2 11. ~~Q ~ intro: 8-10 12. Q ~ elim: 11 13. P ^ Q ^ intro: 7,12 14. ~(P ^ Q) reit: 1 15. _|_ _|_ intro: 13,14 16. ~~(~P v ~Q) ~ intro: 2-15 17. ~P v ~Q ~ elim: 16

More Related