160 likes | 238 Views
Lecture Notes 6 CS1502. Formal Proofs in Propositional Logic. Reiteration. P P. Conjunctive Elimination. 1. PQ . . . P Q. Elimination 1. Elimination 1. Conjunctive Introduction. 1. P . . . 2. Q . . . P Q. Introduction 1,2. Proof.
E N D
Lecture Notes 6CS1502 Formal Proofs in Propositional Logic
Reiteration • P P
Conjunctive Elimination 1. PQ . . . P Q Elimination 1 Elimination 1
Conjunctive Introduction • 1. P . . .2. Q . . .P Q Introduction 1,2
Proof 1. Cube(b) Tet(d) 2. Large(d) 3. Tet(d) Elim 14.Tet(d) ^Large(d) Intro 3, 2
Disjunction Introduction 1. P . . .P Q Introduction 1
AB C (B C) D Prove: 1. AB 2. C 3. 4. 5. B Elim: 1 B C Intro: 3, 2 (B C) D Intro: 4
Same conclusion Disjunctive EliminationProof by cases • P Q . . . P … S Q … SS Elimination
1. (A ^ B) v C 2. A ^ B 3. B ^ Elim: 2 4. C v B v intro: 3 5. C 6. C v B v Intro: 5 7. C v B v Elim: 1,2-4,5-6 (A ^ B) v C C B Prove:
Negative Elimination • 1. P . . .P Elimination 1
Bottom Introduction 1. P…10. P... Introduction 1, 10
Negation Introduction • 7. P . . . 15. P Introduction 7-15
Negation IntroductionProof by contradiction • 10. P . . . 22. 23. P Introduction 10-22 Elimination 23 24. P
A B B A 1. A B 2. B 3. A 4. A 5. Intro: 4, 3 6. B 7. Intro: 6, 2 8. Elim: 1, 4-5, 6-7 9. A Intro: 3-8 10. A Elim: 9 Prove: Note: This is a resolution step, something we are covering later
Reminder: Equivalences • Two FOL sentences P and Q mean the same thing (are logicallyequivalent, written P Q) iff they have the same truth value in all situations. If two sentences are logically equivalent, you can substitute one for the other. • Identity Laws: P ^ T P; P v F P • Domination Laws: P v T T; P ^ F F • Idempotent Laws: P v P P; P ^ P P • Double Negation: ~~P P • Commutative Laws: P v Q Q v P; P ^ Q Q ^ P • Associative Laws: (P v Q) v R P v (Q v R) (P ^ Q) ^ R P ^ (Q ^ R) • Distributive Laws: P v (Q ^ R) (P v Q) ^ (P v R) P ^ (Q v R) (P ^ Q) v (P ^ R) • DeMorgan’s Laws: ~(P ^ Q) ~P v ~Q ~(P v Q) ~P ^ ~Q
1. ~(P ^ Q) 2 . ~(~P v ~Q) 3 . ~P 4 . ~P v ~Q v intro: 3 5 . _|_ _|_ intro: 4,2 6 . ~~P ~ intro: 3-5 (p.by.cont) 7 . P ~ elim: 6 8 . ~Q 9 . ~P v ~Q v intro: 8 10. _|_ _|_ intro: 9,2 11. ~~Q ~ intro: 8-10 12. Q ~ elim: 11 13. P ^ Q ^ intro: 7,12 14. ~(P ^ Q) reit: 1 15. _|_ _|_ intro: 13,14 16. ~~(~P v ~Q) ~ intro: 2-15 17. ~P v ~Q ~ elim: 16