520 likes | 642 Views
Bottomonium and bottomonium –like states. Alex Bondar On behalf of Belle Collaboration. Cracow Epiphany Conference “Present and Future B-physics” (9 - 11, January, 2012, Cracow, Poland ). Observation of Z b. . Outline. (1S) + - (2S) + - (3S) + -
E N D
Bottomonium and bottomonium–like states Alex Bondar On behalf of Belle Collaboration Cracow Epiphany Conference “Present and Future B-physics”(9 - 11, January, 2012, Cracow, Poland )
Observation of Zb Outline (1S)+- (2S)+- (3S)+- hb(1P)+- b(1S) +- hb(2P)+- Zb(10610)+- Zb(10650)+- (5S) at BB* and B*B* thresholds molecules Observation of hb(1P) and hb(2P) arXiv:1103.3419 accepted by PRL arXiv:1110.2251 final state w/ hb(nP) and(nS) accepted by PRL angular analysis arXiv:1105.4583 Observation of hb(1P) b(1S) arXiv:1110.3934
Anomalous production of (nS)+- PRD82,091106R(2010) (MeV) PRL100,112001(2008) line shape of Yb 102 (5S) Simonov JETP Lett 87,147(2008) 1. Rescattering (5S)BB(nS)? 2.Similar effect in charmonium? Y(4260) with anomalous (J/+-) assume Yb close to (5S) to distinguish energy scan shapes of Rb and () different (2)
Observation of hb(1P) & hb(2P)
Trigger CLEO observed e+e- → hc+– @ ECM=4170MeV (hc+–) (J/+–) PRL107, 041803 (2011) Y(4260) Hint of rise in (hc+-) @ Y(4260) ? 4260 Y(4260)Yb search for hb(nP)+- @ (5S)
Introduction to hb(nP) MM(+-) _ (bb) : S=0 L=1 JPC=1+- Expected mass (Mb0 + 3 Mb1 + 5 Mb2) / 9 MHF test of hyperfine interaction For hcMHF= 0.00 0.15 MeV, expect smaller deviation for hb(nP) Previous search arXiv:1102.4565 PRD 84, 091101 BaBar 3.0 (3S) → 0 hb(1P)
Introduction to hb(nP) MM(+-) _ (bb) : S=0 L=1 JPC=1+- Expected mass (Mb0 + 3 Mb1 + 5 Mb2) / 9 MHF test of hyperfine interaction For hcMHF= 0.00 0.15 MeV, expect smaller deviation for hb(nP) Previous search arXiv:1102.4565 PRD 84, 091101 BaBar 3.0 (3S) → 0 hb(1P)
(5S) hb +- reconstruction reconstructed * * M(hb) = Mmiss(+-) (Ec.m. – E+-)2 – p+- 2 hb → ggg, b (→ gg) no good exclusive final states “Missing mass” (1S) hb(1P) (2S) hb(2P) (3S)
Results 121.4 fb-1 Significance w/ systematics hb(1P) 5.5 hb(2P) 11.2
Hyperfine splitting Deviations from CoG (Center of Gravity) of bJmasses hb(1P)(1.7 1.5) MeV/c2 hb(2P)(0.5 +1.6 ) MeV/c2 consistent with zero, as expected -1.2 Ratio of production rates spin-flip for hb(1P) = for hb(2P) no spin-flip Process with spin-flip of heavy quark is not suppressed • Mechanism of (5S) hb(nP) +- decay violates • Heavy Quark Spin Symmetry
Resonant structure of (5S)hb(nP) +-
Resonant structure of (5S) hb(1P)+- phase-space MC M(hb–), GeV/c2 M(hb+), GeV/c2
Resonant structure of (5S) hb(1P)+- Fit function _ ~BB* threshold M1 = MeV/c2 _ _ 1 = MeV a = ~B*B* threshold M2 = MeV/c2 2 = MeV = degrees 121.4 fb-1 phase-space MC fit Mmiss(+–)in M(hb) bins M(hb–), GeV/c2 hb(1P) yield / 10MeV M(hb+), GeV/c2 Zb(10610), Zb(10650) M(hb), GeV/c2 Results Significance 18 (16 w/ syst) non-res.~0
Resonant structure of (5S) hb(2P)+- M1 = MeV/c2 1 = MeV a = M2 = MeV/c2 2 = MeV = degrees 121.4 fb-1 phase-space MC fit Mmiss(+–)in M(hb) bins M(hb–), GeV/c2 hb(1P) yield / 10MeV M(hb+), GeV/c2 M(hb), GeV/c2 hb(1P)+- hb(2P)+- MeV/c2 MeV MeV/c2 c o n s i s t e n t Significances MeV 6.7 (5.6 w/ syst) degrees non-res.~0 non-res. set to zero 14
Resonant structure of (5S)(nS) +- (n=1,2,3)
(5S) (nS)+- (n = 1,2,3) +- (3S) (2S) (1S) reflections Mmiss (+-), GeV/c2
(5S) (nS)+- (n = 1,2,3) +- purity 92 – 94% (3S) (2S) (1S) Mmiss (+-), GeV/c2
(5S) (nS) +- Dalitz plots (1S) (2S) (3S)
(5S) (nS) +- Dalitz plots (1S) (2S) (3S) Signals ofZb(10610) and Zb(10650)
Fitting the Dalitz plots Angular analysis favors JP=1+ S-wave S-wave (5S) Zb, Zb(nS) – no spin orientation change Non-resonant heavy quark spin-flip amplitude is suppressed Spins of (5S) and (nS) can be ignored Signal amplitude parameterization: S(s1,s2) = A(Zb1) + A(Zb2) + A(f0(980)) + A(f2(1275)) + ANR ANR = C1 + C2∙m2(ππ) Parameterization of the non-resonant amplitude is discussed in [1] M.B. Voloshin, Prog. Part. Nucl. Phys. 61:455, 2008. [2] M.B. Voloshin, Phys. Rev. D74:054022, 2006. A(Zb1) + A(Zb2) + A(f2(1275)) – Breit-Wigner A(f0(980)) – Flatte
Results: (1S)π+π- signals M((1S)π+), GeV M((1S)π-), GeV reflections 21
Results: (2S)π+π- signals reflections M((2S)π-), GeV M((2S)π+), GeV
Results: (3S)π+π- M((3S)π+), GeV M((3S)π-), GeV
Summary of Zb parameters Average over 5 channels M1 = 10607.22.0 MeV 1 = 18.42.4 MeV M2 = 10652.21.5 MeV 2 = 11.5 2.2 MeV
Summary of Zb parameters hb(1P) yield / 10MeV M(hb), GeV/c2 Average over 5 channels M1 = 10607.22.0 MeV 1 = 18.42.4 MeV = 180o = 0o M2 = 10652.21.5 MeV 2 = 11.5 2.2 MeV Zb(10610) yield ~ Zb(10650) yield in every channel Relative phases: 0o for and 180o for hb
Angular analysis Definition of angles i(i,e+),[plane(1,e+), plane(1, 2)] Example : (5S) Zb+(10610) - [(2S)+] - cos1 cos2 , rad combinatorial non-resonant Color coding: JP=1+ 1- 2+ 2- (0 is forbidden by parity conservation) Best discrimination: cos2 for 1-(3.6) and 2-(2.7); cos1 for2+(4.3)
Summary of angular analysis All angular distributions are consistent with JP=1+for Zb(10610) & Zb(10650). All other JP with J2 are disfavored at typically 3 level. Probabilities at which different JPhypotheses are disfavored comparedto 1+ Preliminary: procedure to deal with non-resonant contribution is approximate, no mutual cross-feed of Zb’s
Heavy quark structure in Zb A.B.,A.Garmash,A.Milstein,R.Mizuk,M.Voloshin PRD84 054010 (arXiv:1105.4473) Wave func. at large distance – B(*)B* Explains • Why hb is unsuppressed relative to • Relative phase ~0 for and ~1800 for hb • Production rates of Zb(10610) and Zb(10650)are similar • Widths –”– • Existence of other similar states Predicts Other Possible Explanations • Coupled channel resonances (I.V.Danilkin et al, arXiv:1106.1552) • Cusp (D.Bugg Europhys.Lett.96 (2011),arXiv:1105.5492) • Tetraquark (M.Karliner, H.Lipkin, arXiv:0802.0649)
Observation of hb(1P)b(1S)
Introduction to b Expected decays of hb Godfrey & Rosner, PRD66 014012 (2002) hb(1P) → ggg (57%), b(1S) (41%), gg (2%) hb(2P) → ggg (63%), b(1S) (13%), b(2S) (19%), gg (2%) Large hb(mP) samples give opportunity to study b(nS) states. (3S) b(1S) Experimental status of b M[b(1S)] = 9390.9 2.8 MeV (BaBar + CLEO) M[(1S)] – M[b(1S)] = 69.3 2.8 MeV pNRQCD: 4114 MeV Lattice: 608 MeV Kniehl et al., PRL92,242001(2004) Meinel, PRD82,114502(2010) Width of b(1S): no information
+ (5S) Zb- M(b) Method Decay chain reconstruct hb (nP) + Use missing massto identify signals b(mS) MC simulation true +- fake true +- true fake +- true M(hb)
+ (5S) Zb- M(b) Method Decay chain reconstruct hb (nP) + Use missing massto identify signals b(mS) MC simulation Mmiss(+-) Mmiss(+-) – Mmiss(+-) + M[hb] true +- fake true +- true fake +- true M(hb)
+ (5S) Zb- M(b) Method Decay chain reconstruct hb (nP) + Use missing massto identify signals b(mS) MC simulation Mmiss(+-) Mmiss(+-) – Mmiss(+-) + M[hb] Approach: fit Mmiss(+-) spectrain Mmiss(+-) bins hb(1P) yield vs. Mmiss(+-) search for b(1S) signal M(hb)
Results N.Brambilla et al., Eur.Phys.J. C71(2011) 1534 (arXiv:1010.5827) b(1S) pNRQCD Lattice 13 BaBar (3S) b(1S) BaBar (2S) CLEO (3S) BELLE preliminary MHF [b(1S)] = 59.3 1.9 +2.4 MeV/c2 –1.4 potential models : = 5 – 20 MeV Godfrey & Rosner : BF = 41%
Summary First observation of hb(1P) and hb(2P) arXiv:1103.3419 accepted by PRL Hyperfine splitting consistent with zero, as expectedAnomalous production rates Observation of two charged bottomonium-like resonances in 5 final states arXiv:1105.4583, arXiv:1110.2251, accepted by PRL (1S)π+, (2S) π+, (3S)π+,hb(1P)+, hb(2P)+ M = 10607.2 2.0 MeV = 18.4 2.4 MeV M= 10652.2 1.5 MeV = 11.5 2.2 MeV Zb(10610) Zb(10610) Masses are close to BB* and B*B* thresholds – molecule? Angular analyses favour JP= 1+ , decay pattern IG = 1+ Observation of hb(1P)b(1S) arXiv:1110.3934 The most precise single meas., significantly different from WA,decreases tension w/ theory Will Zb’s become a key to understanding of all other quarkonium-like states?
arXiv:1105.5829 12GeV U(?S) 11.5GeV U(6S) h U(5S) r w g r r p w g B*B* w Up hbphbr Ur Ur hbp Uh hbw Uw hbh Uw g BB* g Ur Uw BB Wb1 Xb Wb2 Wb0 Zb 0-(1+) IG(JP) 1+(1+) 0+(0+) 1-(0+) 0+(1+) 1-(1+) 0+(2+) 1-(2+) 0-(1-)
Coupled channel resonance? I.V.Danilkin, V.D.Orlovsky, Yu.Simonov arXiv:1106.1552 No interaction between B(*)B* or is needed to form resonance No other resonances predicted B(*)B* interaction switched on individual mass in every channel?
Cusp? D.Bugg Europhys.Lett.96 (2011) (arXiv:1105.5492) Line-shape Amplitude Not a resonance
Tetraquark? Ying Cui, Xiao-lin Chen, Wei-Zhen Deng, Shi-Lin Zhu, High Energy Phys.Nucl.Phys.31:7-13, 2007 (hep-ph/0607226) M ~ 10.2 – 10.3 GeV M ~ 10.5 – 10.8 GeV Tao Guo, Lu Cao, Ming-Zhen Zhou, Hong Chen, (1106.2284) M ~ 9.4, 11 GeV M.Karliner, H.Lipkin, (0802.0649)
+ (5S) Zb- Selection Decay chain reconstruct hb (nP) + b(mS) R2<0.3 Hadronic event selection; continuum suppression using event shape; 0 veto. Require intermediate Zb :10.59 < MM() < 10.67 GeV bg. suppression 5.2 Zb
Mmiss(+-) spectrum requirement of intermediate Zb Update of M [hb(1P)] : MHF [hb(1P)] = (+0.8 1.1)MeV/c2 Previous Belle meas.: arXiv:1103.3411 hb(1P) (2S) MHF [hb(1P)] = (+1.6 1.5)MeV/c2 3S1S
Results of fits to Mmiss(+-) spectra hb(1P) yield b(1S) Peaking background? MC simulation none. (2S) yield no significant structures Reflection yield
B+ c1 K+ (J/ ) K+ Use decays cosHel (c1)> – 0.2 match energy of signal &callibrationchannels Calibration Photon energy spectrum MC simulation hb(1P)b(1S) c1 J/ cosHel >–0.2
mass shift –0.7 0.3 +0.2 MeV –0.4 Calibration (2) Resolution: double-sided CrystalBall function with asymmetric core data E s.b. subtracted M(J/), GeV/c2 Correction of MC fudge-factor for resolution 1.15 0.06 0.06
Integrated Luminosity at B-factories (fb-1) asymmetric e+e- collisions > 1 ab-1 On resonance: (5S): 121 fb-1 (4S): 711 fb-1 (3S): 3 fb-1 (2S): 24 fb-1 (1S): 6 fb-1 Off reson./scan : ~100 fb-1 Bs 530 fb-1 On resonance: (4S): 433 fb-1 (3S): 30 fb-1 (2S): 14 fb-1 Off reson./scan : ~54 fb-1
e+e- hadronic cross-section BaBar PRL 102, 012001 (2009) (1S) (5S) (6S) (4S) (2S) (3S) (4S) Belle took data at E=108671MэВ 2M(B) 2M(Bs) _ e+ e- ->(4S) -> BB,whereBisB+orB0 _ _ _ _ _ e+ e- -> bb ((5S)) ->B(*)B(*), B(*)B(*)p, BBpp, Bs(*)Bs(*), (1S)pp, X … main motivation for taking data at (5S)
Description of fit to MM(+-) Three fit regions Example of fit 1 2 3 BG: Chebyshev polynomial, 6th or 7th order Signal: shape is fixed from +-+- data “Residuals” – subtract polynomial from data points KS contribution: subtract bin-by-bin (1S) Residuals kinematicboundary M(+-) Ks generic (3S) MM(+-) MM(+-)