1 / 52

Bottomonium and bottomonium –like states

Bottomonium and bottomonium –like states. Alex Bondar On behalf of Belle Collaboration. Cracow Epiphany Conference “Present and Future B-physics” (9 - 11, January, 2012, Cracow, Poland ). Observation of Z b. . Outline.  (1S)  +  -  (2S)  +  -  (3S)  +  -

ciro
Download Presentation

Bottomonium and bottomonium –like states

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bottomonium and bottomonium–like states Alex Bondar On behalf of Belle Collaboration Cracow Epiphany Conference “Present and Future B-physics”(9 - 11, January, 2012, Cracow, Poland )

  2. Observation of Zb  Outline (1S)+- (2S)+- (3S)+- hb(1P)+- b(1S) +- hb(2P)+- Zb(10610)+- Zb(10650)+- (5S) at BB* and B*B* thresholds  molecules Observation of hb(1P) and hb(2P) arXiv:1103.3419 accepted by PRL arXiv:1110.2251 final state w/ hb(nP) and(nS) accepted by PRL angular analysis arXiv:1105.4583 Observation of hb(1P) b(1S) arXiv:1110.3934

  3. Anomalous production of (nS)+- PRD82,091106R(2010) (MeV) PRL100,112001(2008) line shape of Yb 102 (5S) Simonov JETP Lett 87,147(2008) 1. Rescattering (5S)BB(nS)? 2.Similar effect in charmonium? Y(4260) with anomalous (J/+-)  assume  Yb close to (5S) to distinguish energy scan  shapes of Rb and () different (2)

  4. Observation of hb(1P) & hb(2P)

  5. Trigger CLEO observed e+e- → hc+– @ ECM=4170MeV (hc+–) (J/+–) PRL107, 041803 (2011) Y(4260) Hint of rise in (hc+-) @ Y(4260) ? 4260 Y(4260)Yb search for hb(nP)+- @ (5S)

  6. Introduction to hb(nP) MM(+-) _ (bb) : S=0 L=1 JPC=1+- Expected mass  (Mb0 + 3 Mb1 + 5 Mb2) / 9 MHF test of hyperfine interaction For hcMHF= 0.00  0.15 MeV, expect smaller deviation for hb(nP) Previous search arXiv:1102.4565 PRD 84, 091101 BaBar 3.0 (3S) → 0 hb(1P)

  7. Introduction to hb(nP) MM(+-) _ (bb) : S=0 L=1 JPC=1+- Expected mass  (Mb0 + 3 Mb1 + 5 Mb2) / 9 MHF test of hyperfine interaction For hcMHF= 0.00  0.15 MeV, expect smaller deviation for hb(nP) Previous search arXiv:1102.4565 PRD 84, 091101 BaBar 3.0 (3S) → 0 hb(1P)

  8. (5S)  hb +- reconstruction reconstructed * * M(hb) =  Mmiss(+-) (Ec.m. – E+-)2 – p+- 2 hb → ggg, b (→ gg)  no good exclusive final states “Missing mass” (1S) hb(1P) (2S) hb(2P) (3S)

  9. Results 121.4 fb-1 Significance w/ systematics hb(1P) 5.5 hb(2P) 11.2

  10. Hyperfine splitting Deviations from CoG (Center of Gravity) of bJmasses hb(1P)(1.7  1.5) MeV/c2 hb(2P)(0.5 +1.6 ) MeV/c2 consistent with zero, as expected -1.2 Ratio of production rates spin-flip for hb(1P) = for hb(2P) no spin-flip Process with spin-flip of heavy quark is not suppressed • Mechanism of (5S)  hb(nP) +- decay violates • Heavy Quark Spin Symmetry

  11. Resonant structure of (5S)hb(nP) +-

  12. Resonant structure of (5S)  hb(1P)+- phase-space MC M(hb–), GeV/c2 M(hb+), GeV/c2

  13. Resonant structure of (5S)  hb(1P)+- Fit function _ ~BB* threshold M1 = MeV/c2 _ _ 1 = MeV a = ~B*B* threshold M2 = MeV/c2 2 = MeV  = degrees 121.4 fb-1 phase-space MC fit Mmiss(+–)in M(hb) bins  M(hb–), GeV/c2 hb(1P) yield / 10MeV M(hb+), GeV/c2 Zb(10610), Zb(10650) M(hb), GeV/c2 Results Significance 18 (16 w/ syst) non-res.~0

  14. Resonant structure of (5S)  hb(2P)+- M1 = MeV/c2 1 = MeV a = M2 = MeV/c2 2 = MeV  = degrees 121.4 fb-1 phase-space MC fit Mmiss(+–)in M(hb) bins  M(hb–), GeV/c2 hb(1P) yield / 10MeV M(hb+), GeV/c2 M(hb), GeV/c2 hb(1P)+- hb(2P)+- MeV/c2 MeV MeV/c2 c o n s i s t e n t Significances MeV 6.7 (5.6 w/ syst) degrees non-res.~0 non-res. set to zero 14

  15. Resonant structure of (5S)(nS) +- (n=1,2,3)

  16. (5S) (nS)+- (n = 1,2,3)  +- (3S) (2S) (1S) reflections Mmiss (+-), GeV/c2

  17. (5S) (nS)+- (n = 1,2,3)  +- purity 92 – 94% (3S) (2S) (1S) Mmiss (+-), GeV/c2

  18. (5S) (nS) +- Dalitz plots (1S) (2S) (3S)

  19. (5S) (nS) +- Dalitz plots (1S) (2S) (3S) Signals ofZb(10610) and Zb(10650)

  20. Fitting the Dalitz plots Angular analysis favors JP=1+ S-wave S-wave (5S)  Zb, Zb(nS) – no spin orientation change Non-resonant heavy quark spin-flip amplitude is suppressed Spins of (5S) and (nS) can be ignored Signal amplitude parameterization: S(s1,s2) = A(Zb1) + A(Zb2) + A(f0(980)) + A(f2(1275)) + ANR ANR = C1 + C2∙m2(ππ) Parameterization of the non-resonant amplitude is discussed in [1] M.B. Voloshin, Prog. Part. Nucl. Phys. 61:455, 2008. [2] M.B. Voloshin, Phys. Rev. D74:054022, 2006. A(Zb1) + A(Zb2) + A(f2(1275)) – Breit-Wigner A(f0(980)) – Flatte

  21. Results: (1S)π+π- signals M((1S)π+), GeV M((1S)π-), GeV reflections 21

  22. Results: (2S)π+π- signals reflections M((2S)π-), GeV M((2S)π+), GeV

  23. Results: (3S)π+π- M((3S)π+), GeV M((3S)π-), GeV

  24. Summary of Zb parameters Average over 5 channels  M1 = 10607.22.0 MeV  1  = 18.42.4 MeV  M2 = 10652.21.5 MeV  2  = 11.5  2.2 MeV

  25. Summary of Zb parameters hb(1P) yield / 10MeV M(hb), GeV/c2 Average over 5 channels  M1 = 10607.22.0 MeV  1  = 18.42.4 MeV  = 180o  = 0o  M2 = 10652.21.5 MeV  2  = 11.5  2.2 MeV Zb(10610) yield ~ Zb(10650) yield in every channel Relative phases: 0o for  and 180o for hb

  26. Angular analysis

  27. Angular analysis Definition of angles i(i,e+),[plane(1,e+), plane(1, 2)] Example : (5S)  Zb+(10610) -  [(2S)+] - cos1 cos2 , rad combinatorial non-resonant Color coding: JP=1+ 1- 2+ 2- (0 is forbidden by parity conservation) Best discrimination: cos2 for 1-(3.6) and 2-(2.7); cos1 for2+(4.3)

  28. Summary of angular analysis All angular distributions are consistent with JP=1+for Zb(10610) & Zb(10650). All other JP with J2 are disfavored at typically 3 level. Probabilities at which different JPhypotheses are disfavored comparedto 1+ Preliminary: procedure to deal with non-resonant contribution is approximate, no mutual cross-feed of Zb’s

  29. Heavy quark structure in Zb A.B.,A.Garmash,A.Milstein,R.Mizuk,M.Voloshin PRD84 054010 (arXiv:1105.4473) Wave func. at large distance – B(*)B* Explains • Why hb is unsuppressed relative to  • Relative phase ~0 for  and ~1800 for hb • Production rates of Zb(10610) and Zb(10650)are similar • Widths –”– • Existence of other similar states Predicts Other Possible Explanations • Coupled channel resonances (I.V.Danilkin et al, arXiv:1106.1552) • Cusp (D.Bugg Europhys.Lett.96 (2011),arXiv:1105.5492) • Tetraquark (M.Karliner, H.Lipkin, arXiv:0802.0649)

  30. Observation of hb(1P)b(1S) 

  31. Introduction to b Expected decays of hb Godfrey & Rosner, PRD66 014012 (2002) hb(1P) → ggg (57%), b(1S) (41%), gg (2%) hb(2P) → ggg (63%), b(1S) (13%), b(2S) (19%), gg (2%) Large hb(mP) samples give opportunity to study b(nS) states. (3S)  b(1S)  Experimental status of b M[b(1S)] = 9390.9  2.8 MeV (BaBar + CLEO) M[(1S)] – M[b(1S)] = 69.3  2.8 MeV pNRQCD: 4114 MeV Lattice: 608 MeV Kniehl et al., PRL92,242001(2004) Meinel, PRD82,114502(2010) Width of b(1S): no information

  32. + (5S)  Zb- M(b) Method Decay chain reconstruct  hb (nP) + Use missing massto identify signals  b(mS)  MC simulation true +- fake  true +- true  fake +- true  M(hb)

  33. + (5S)  Zb- M(b) Method Decay chain reconstruct  hb (nP) + Use missing massto identify signals  b(mS)  MC simulation Mmiss(+-)  Mmiss(+-) – Mmiss(+-) + M[hb] true +- fake  true +- true  fake +- true  M(hb)

  34. + (5S)  Zb- M(b) Method Decay chain reconstruct  hb (nP) + Use missing massto identify signals  b(mS)  MC simulation Mmiss(+-)  Mmiss(+-) – Mmiss(+-) + M[hb] Approach: fit Mmiss(+-) spectrain Mmiss(+-) bins hb(1P) yield vs. Mmiss(+-)  search for b(1S) signal M(hb)

  35. Results N.Brambilla et al., Eur.Phys.J. C71(2011) 1534 (arXiv:1010.5827) b(1S) pNRQCD Lattice 13 BaBar (3S)  b(1S)  BaBar (2S) CLEO (3S) BELLE preliminary MHF [b(1S)] = 59.3  1.9 +2.4 MeV/c2 –1.4 potential models :  = 5 – 20 MeV Godfrey & Rosner : BF = 41%

  36. Summary First observation of hb(1P) and hb(2P) arXiv:1103.3419 accepted by PRL Hyperfine splitting consistent with zero, as expectedAnomalous production rates Observation of two charged bottomonium-like resonances in 5 final states arXiv:1105.4583, arXiv:1110.2251, accepted by PRL (1S)π+, (2S) π+, (3S)π+,hb(1P)+, hb(2P)+ M = 10607.2  2.0 MeV  = 18.4 2.4 MeV M= 10652.2  1.5 MeV  = 11.5  2.2 MeV Zb(10610) Zb(10610) Masses are close to BB* and B*B* thresholds – molecule? Angular analyses favour JP= 1+ , decay pattern IG = 1+ Observation of hb(1P)b(1S) arXiv:1110.3934 The most precise single meas., significantly different from WA,decreases tension w/ theory Will Zb’s become a key to understanding of all other quarkonium-like states?

  37. Back up

  38. arXiv:1105.5829 12GeV U(?S) 11.5GeV U(6S) h U(5S) r w g r r p w g B*B* w Up hbphbr Ur Ur hbp Uh hbw Uw hbh Uw g BB* g Ur Uw BB Wb1 Xb Wb2 Wb0 Zb 0-(1+) IG(JP) 1+(1+) 0+(0+) 1-(0+) 0+(1+) 1-(1+) 0+(2+) 1-(2+) 0-(1-)

  39. Coupled channel resonance? I.V.Danilkin, V.D.Orlovsky, Yu.Simonov arXiv:1106.1552 No interaction between B(*)B* or  is needed to form resonance No other resonances predicted B(*)B* interaction switched on individual mass in every channel?

  40. Cusp? D.Bugg Europhys.Lett.96 (2011) (arXiv:1105.5492) Line-shape Amplitude Not a resonance

  41. Tetraquark? Ying Cui, Xiao-lin Chen, Wei-Zhen Deng, Shi-Lin Zhu, High Energy Phys.Nucl.Phys.31:7-13, 2007 (hep-ph/0607226) M ~ 10.2 – 10.3 GeV M ~ 10.5 – 10.8 GeV Tao Guo, Lu Cao, Ming-Zhen Zhou, Hong Chen, (1106.2284) M ~ 9.4, 11 GeV M.Karliner, H.Lipkin, (0802.0649)

  42. + (5S)  Zb- Selection Decay chain reconstruct  hb (nP) +  b(mS)  R2<0.3 Hadronic event selection; continuum suppression using event shape; 0 veto. Require intermediate Zb :10.59 < MM() < 10.67 GeV bg. suppression 5.2 Zb

  43. Mmiss(+-) spectrum requirement of intermediate Zb Update of M [hb(1P)] : MHF [hb(1P)] = (+0.8  1.1)MeV/c2 Previous Belle meas.: arXiv:1103.3411 hb(1P) (2S) MHF [hb(1P)] = (+1.6  1.5)MeV/c2 3S1S

  44. Results of fits to Mmiss(+-) spectra hb(1P) yield b(1S) Peaking background? MC simulation  none. (2S) yield no significant structures Reflection yield

  45. B+ c1 K+  (J/ ) K+ Use decays cosHel (c1)> – 0.2 match  energy of signal &callibrationchannels Calibration Photon energy spectrum MC simulation hb(1P)b(1S) c1  J/ cosHel >–0.2

  46. mass shift –0.7  0.3 +0.2 MeV –0.4 Calibration (2) Resolution: double-sided CrystalBall function with asymmetric core data E s.b. subtracted M(J/), GeV/c2  Correction of MC fudge-factor for resolution 1.15  0.06  0.06

  47. Integrated Luminosity at B-factories (fb-1) asymmetric e+e- collisions > 1 ab-1 On resonance: (5S): 121 fb-1 (4S): 711 fb-1 (3S): 3 fb-1 (2S): 24 fb-1 (1S): 6 fb-1 Off reson./scan : ~100 fb-1 Bs 530 fb-1 On resonance: (4S): 433 fb-1 (3S): 30 fb-1 (2S): 14 fb-1 Off reson./scan : ~54 fb-1

  48. e+e- hadronic cross-section BaBar PRL 102, 012001 (2009) (1S) (5S) (6S) (4S) (2S) (3S) (4S) Belle took data at E=108671MэВ 2M(B) 2M(Bs) _ e+ e- ->(4S) -> BB,whereBisB+orB0 _ _ _ _ _ e+ e- -> bb ((5S)) ->B(*)B(*), B(*)B(*)p, BBpp, Bs(*)Bs(*), (1S)pp, X … main motivation for taking data at (5S)

  49. Description of fit to MM(+-) Three fit regions Example of fit 1 2 3 BG: Chebyshev polynomial, 6th or 7th order Signal: shape is fixed from +-+- data “Residuals” – subtract polynomial from data points KS contribution: subtract bin-by-bin (1S) Residuals kinematicboundary M(+-) Ks generic (3S) MM(+-) MM(+-)

More Related